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Abstract 

The PageRank algorithm, used in the Google search engine, greatly 
improves the results of Web search by taking into account the link 
structure of the Web. PageRank assigns to a page a score propor-
tional to the number of times a random surfer would visit that page, 
if it surfed indefinitely from page to page, following all outlinks 
from a page with equal probability. We propose to improve Page-
Rank by using a more intelligent surfer, one that is guided by a 
probabilistic model of the relevance of a page to a query. Efficient 
execution of our algorithm at query time is made possible by pre-
computing at crawl time (and thus once for all queries) the neces-
sary terms. Experiments on two large subsets of the Web indicate 
that our algorithm significantly outperforms PageRank in the (hu-
man-rated) quality of the pages returned, while remaining efficient 
enough to be used in today’s large search engines. 

1 Introduction 

Traditional information retrieval techniques can give poor results on the Web, with 
its vast scale and highly variable content quality. Recently, however, it was found 
that Web search results can be much improved by using the information contained in 
the link structure between pages. The two best-known algorithms which do this are 
HITS [1] and PageRank [2]. The latter is used in the highly successful Google search 
engine [3]. The heuristic underlying both of these approaches is that pages with many 
inlinks are more likely to be of high quality than pages with few inlinks, given that 
the author of a page will presumably include in it links to pages that s/he believes are 
of high quality. Given a query (set of words or other query terms), HITS invokes a 
traditional search engine to obtain a set of pages relevant to it, expands this set with 
its inlinks and outlinks, and then attempts to find two types of pages, hubs (pages 
that point to many pages of high quality) and authorities (pages of high quality). Be-
cause this computation is carried out at query time, it is not feasible for today’s 
search engines, which need to handle tens of millions of queries per day. In contrast, 
PageRank computes a single measure of quality for a page at crawl time. This meas-



 

ure is then combined with a traditional information retrieval score at query time. 
Compared with HITS, this has the advantage of much greater efficiency, but the dis-
advantage that the PageRank score of a page ignores whether or not the page is rele-
vant to the query at hand. 

Traditional information retrieval measures like TFIDF [4] rate a document highly if 
the query terms occur frequently in it. PageRank rates a page highly if it is at the cen-
ter of a large sub-web (i.e., if many pages point to it, many other pages point to 
those, etc.). Intuitively, however, the best pages should be those that are at the center 
of a large sub-web relevant to the query. If one issues a query containing the word 
jaguar, then pages containing the word jaguar that are also pointed to by many other 
pages containing jaguar are more likely to be good choices than pages that contain 
jaguar but have no inlinks from pages containing it. This paper proposes a search 
algorithm that formalizes this intuition while, like PageRank, doing most of its com-
putations at crawl time. The PageRank score of a page can be viewed as the rate at 
which a surfer would visit that page, if it surfed the Web indefinitely, blindly jump-
ing from page to page. Our algorithm does something closer to what a human surfer 
would do, jumping preferentially to pages containing the query terms.  

A problem common to both PageRank and HITS is topic drift. Because they give the 
same weight to all edges, the pages with the most inlinks in the network being con-
sidered (either at crawl or query time) tend to dominate, whether or not they are the 
most relevant to the query. Chakrabarti et al. [5] and Bharat and Henzinger [6] pro-
pose heuristic methods for differentially weighting links. Our algorithm can be 
viewed as a more principled approach to the same problem. It can also be viewed as 
an analog for PageRank of Cohn and Hofmann’s [7] variation of HITS. Rafiei and 
Mendelzon's [8] algorithm, which biases PageRank towards pages containing a spe-
cific word, is a predecessor of our work. Haveliwala [9] proposes applying an opti-
mized version of PageRank to the subset of pages containing the query terms, and 
suggests that users do this on their own machines. 

We first describe PageRank. We then introduce our query-dependent, content-
sensitive version of PageRank, and demonstrate how it can be implemented effi-
ciently. Finally, we present and discuss experimental results. 

2 PageRank : The Random Surfer 

Imagine a web surfer who jumps from web page to web page, choosing with uniform 
probability which link to follow at each step. In order to reduce the effect of dead-
ends or endless cycles the surfer will occasionally jump to a random page with some 
small probability β, or when on a page with no out-links. To reformulate this in 
graph terms, consider the web as a directed graph, where nodes represent web pages, 
and edges between nodes represent links between web pages. Let W be the set of 
nodes, N=|W|, Fi be the set of pages page i links to, and Bi be the set pages which 
link to page i. For pages which have no outlinks we add a link to all pages in the 
graph1. In this way, rank which is lost due to pages with no outlinks is redistributed 
uniformly to all pages. If averaged over a sufficient number of steps, the probability 
the surfer is on page j at some point in time is given by the formula: 

 ∑
∈

+−=
jBi iF

iP

N
jP

)()1(
)( ββ

 (1) 

                                                           
1 For each page s with no outlinks, we set Fs={all N nodes}, and for all other nodes aug-
ment Bi with s. (Bi ∪ {s}) 



 

The PageRank score for node j is defined as this probability: PR(j)=P(j). Because 
equation (1) is recursive, it must be iteratively evaluated until P(j) converges. Typi-
cally, the initial distribution for P(j) is uniform. PageRank is equivalent to the pri-
mary eigenvector of the transition matrix Z: 
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One iteration of equation (1) is equivalent to computing xt+1=Zxt, where xj
t=P(j) at 

iteration t. After convergence, we have xT+1=xT, or xT=ZxT, which means xT is an 
eigenvector of Z. Furthermore, since the columns of Z are normalized, x has an ei-
genvalue of 1. 

3 Directed Surfer Model 

We propose a more intelligent surfer, who probabilistically hops from page to page, 
depending on the content of the pages and the query terms the surfer is looking for. 
The resulting probability distribution over pages is: 
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where Pq(i→j) is the probability that the surfer transitions to page j given that he is 
on page i and is searching for the query q. Pq’(j) specifies where the surfer chooses to 
jump when not following links. Pq(j) is the resulting probability distribution over 
pages and corresponds to the query-dependent PageRank score (QD-PageRankq(j) ≡ 
Pq(j)). As with PageRank, QD-PageRank is determined by iterative evaluation of 
equation 3 from some initial distribution, and is equivalent to the primary eigenvec-
tor of the transition matrix Zq, where ∑

∈
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Pq(i→j) and Pq’(j) are arbitrary distributions, we will focus on the case where both 
probability distributions are derived from Rq(j), a measure of relevance of page j to 
query q: 
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In other words, when choosing among multiple out-links from a page, the directed 
surfer tends to follow those which lead to pages whose content has been deemed 
relevant to the query (according to Rq). Similarly to PageRank, when a page’s out-
links all have zero relevance, or has no outlinks, we add links from that page to all 
other pages in the network. On such a page, the surfer thus chooses a new page to 
jump to according to the distribution Pq’ (j). 

When given a multiple-term query, Q={q1,q2,…},  the surfer selects a q according to 
some probability distribution, P(q) and uses that term to guide its behavior (accord-
ing to equation 3) for a large number of steps1. It then selects another term according 
to the distribution to determine its behavior, and so on. The resulting distribution 
over visited web pages is QD-PageRankQ and is given by 

                                                           
1 However many steps are needed to reach convergence of equation 3. 
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For standard PageRank, the PageRank vector is equivalent to the primary eigenvector 
of the matrix Z.  The vector of single-term QD-PageRankq is again equivalent to the 
primary eigenvector of the matrix Zq. An interesting question that arises is whether 
the QD-PageRankQ vector is equivalent to the primary eigenvector of a matrix 
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fact, this is not the case. Instead, the primary eigenvector of ZQ corresponds to the 
QD-PageRank obtained by a random surfer who, at each step, selects a new query 
according to the distribution P(q). However, QD-PageRankQ is approximately equal 
to the PageRank that results from this single-step surfer, for the following reason. 

Let xq be the L2-normalized primary eigenvector for matrix Zq (note element j of xq 
is QD-PageRankq(j)), thus satisfying xi=Tixi. Since xq is the primary eigenvector for 

Zq, we have [10]: rqqqQrq xZxZ ≥∈∀ :, . Thus, to a first degree of approxima-
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and thus xQ is approximately an eigenvector for ZQ. Since xQ is equivalent to QD-
PageRankQ, and ZQ describes the behavior of the single-step surfer, QD-PageRankQ 
is approximately the same PageRank that would be obtained by using the single-step 
surfer. The approximation has the least error when the individual random surfers de-
fined by Zq are very similar, or are very dissimilar. 

The choice of relevance function Rq(j) is arbitrary. In the simplest case, Rq(j)=R is 
independent of the query term and the document, and QD-PageRank reduces to Page-
Rank. One simple content-dependent function could be Rq(j)=1 if the term q appears 
on page j, and 0 otherwise. Much more complex functions could be used, such as the 
well-known TFIDF information retrieval metric, a score obtained by latent semantic 
indexing, or any heuristic measure using text size, positioning, etc…. It is important 
to note that most current text ranking functions could be easily incorporated into the 
directed surfer model. 

4 Scalability 

The difficulty with calculating a query dependent PageRank is that a search engine 
cannot perform the computation, which can take hours, at query time, when it is ex-
pected to return results in seconds (or less). We surmount this problem by precom-
puting the individual term rankings QD-PageRankq, and combining them at query 
time according to equation 5. We show that the computation and storage require-
ments for QD-PageRankq for hundreds of thousands of words is only approximately 
100-200 times that of a single query independent PageRank. 

Let W={q1, q2, …, qm} be the set of words in our lexicon. That is, we assume all 
search queries contain terms in W, or we are willing to use plain PageRank for those 
terms not in W. Let dq be the number of documents which contain the term q. Then 

∑
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qdS is the number of unique document-term pairs. 



 

4.1 Disk Storage 

For each term q, we must store the results of the computation. We add the minor re-
striction that a search query will only return documents containing all of the terms1. 
Thus, when merging QD-PageRankq’s, we need only to know the QD-PageRankq for 
documents that contain the term. Each QD-PageRankq is a vector of dq values. Thus, 
the space required to store all of the PageRanks is S, a factor of S/N times the query 
independent PageRank alone (recall N is the number of web pages). Further, note 
that the storage space is still considerably less than that required for the search en-
gine’s reverse index, which must store information about all document-term pairs, as 
opposed to our need to store information about every unique document term pair. 

4.2 Time Requirements 

If Rq(j)=0 for some document j, the directed surfer will never arrive at that page. In 
this case, we know QD-PageRankq(j)=0, and thus when calculating QD-PageRankq, 
we need only consider the subset of nodes for which Rq(j)>0. We add the reasonable 
constraint that Rq(j)=0 if term q does not appear in document j, which is common for 
most information retrieval relevance metrics, such as TFIDF. The computation for 
term q then only needs to consider dq documents. Because it is proportional to the 
number of documents in the graph, the computation of QD-PageRankq for all q in W 
will require O(S) time, a factor of S/N times the computation of the query independ-
ent PageRank alone. Furthermore, we have noticed in our experiments that the com-
putation converges in fewer iterations on these smaller sub-graphs, empirically re-
ducing the computational requirements to 0.75*S/N. Additional speedup may be de-
rived from the fact that for most words, the sub-graph will completely fit in memory, 
unlike PageRank which (for any large corpus) must repeatedly read the graph struc-
ture from disk during computation.  

4.3 Empirical  Scalabil ity  

The fraction S/N is critical to determining the scalability of QD-PageRank. If every 
document contained vastly different words, S/N would be proportional to the number 
of search terms, m. However, this is not the case. Instead, there are a very few words 
that are found in almost every document, and many words which are found in very 
few documents2; in both cases the contribution to S is small. 

In our database of 1.7 million pages (see section 5), we let W be the set of all unique 
words, and removed the 100 most common words3. This results in |W|=2.3 million 
words, and the ratio S/N was found to be 165. We expect that this ratio will remain 
relatively constant even for much larger sets of web pages. This means QD-
PageRank requires approximately 165 times the storage space and 124 times the 
computation time to allow for arbitrary queries over any of the 2.3 million words 
(which is still less storage space than is required by the search engine’s reverse index 
alone). 

                                                           
1 Google has this “feature” as well. See http://www.google.com/technology/whyuse.html. 
2 This is because the distribution of words in text tends to follow an inverse power law 
[11]. We also verified experimentally that the same holds true for the distribution of the 
number of documents a word is found in. 
3 It is common to remove “stop” words such as the, is, etc., as they do not affect the 
search. 



 

5 Results 

We give results on two data sets: educrawl, and WebBase. Educrawl is a crawl of the 
web, restricted to .edu domains. The crawler was seeded with the first 18 results of a 
search for “ University”  on Google (www.google.com). Links containing “ ?”  or “ cgi-
bin”  were ignored, and links were only followed if they ended with “ .html” .  The 
crawl contains 1.76 million pages over 32,000 different domains. WebBase is the first 
15 million pages of the Stanford WebBase repository [12], which contains over 120 
million pages. For both datasets, HTML tags were removed before processing. 

We calculated QD-PageRank as described above, using Rq(j) = the fraction of words 
equal to q in page j, and P(q)=1/|Q|. We compare our algorithm to the standard Pag-
eRank algorithm. For content ranking, we used the same Rq(j) function as for QD-
PageRank, but, similarly to TFIDF, weighted the contribution of each search term by 
the log of its inverse document frequency. As there is nothing published about merg-
ing PageRank and content rank into one list, the approach we follow is to normalize 
the two scores and add them. This implicitly assumes that PageRank and content rank 
are equally important. This resulted in poor PageRank performance, which we found 
was because the distribution of PageRanks is much more skewed than the distribution 
of content ranks; normalizing the vectors resulted in PageRank primarily determining 
the final ranking. To correct this problem, we scaled each vector to have the same 
average value in its top ten terms before adding the two vectors. This drastically im-
proved PageRank. 

For educrawl, we requested a single word and two double word search queries from 
each of three volunteers, resulting in a total of nine queries. For each query, we ran-
domly mixed the top 10 results from standard PageRank with the top 10 results from 
QD-PageRank, and gave them to four volunteers, who were asked to rate each search 
result as a 0 (not relevant), 1 (somewhat relevant, not very good), or 2 (good search 
result) based on the contents of the page it pointed to. In Table 1, we present the final 
rating for each method, per query. This rating was obtained by first summing the rat-
ings for the ten pages from each method for each volunteer, and then averaging the 
individual ratings. A similar experiment for WebBase is given in Table 2. For Web-
Base, we randomly selected the queries from Bharat and Henzinger [6]. The four 
volunteers for the WebBase evaluation were independent from the four for the 
educrawl evaluation, and none knew how the pages they were asked to rate were ob-
tained. 

Table 1: Results on educrawl  Table 2: Results on WebBase 

Query QD-PR PR  Query QD-PR PR 

chinese association 10.75 6.50  alcoholism 11.50 11.88 
computer labs 9.50 13.25  architecture 8.45 2.93 
financial aid 8.00 12.38  bicycling 8.45 6.88 
intramural 16.5 10.25  rock climbing 8.43 5.75 
maternity 12.5 6.75  shakespeare 11.53 5.03 
president office 5.00 11.38  stamp collecting 9.13 10.68 
sororities 13.75 7.38  vintage car 13.15 8.68 
student housing 14.13 10.75  Thailand tourism 16.90 9.75 
visitor visa 19.25 12.50  Zen Buddhism 8.63 10.38 

Average 12.15 10.13  Average 10.68 7.99 

 



 

QD-PageRank performs better than PageRank, accomplishing a relative improvement 
in relevance of 20% on educrawl and 34% on WebBase. The results are statistically 
significant (p<.03 for educrawl and p<.001 for WebBase using a two-tailed paired t-
test, one sample per person per query). Averaging over queries, every volunteer 
found QD-PageRank to be an improvement over PageRank, though not all differ-
ences were statistically significant. 

One item to note is that the results on multiple word queries are not as positive as the 
results on single word queries. As discussed in section 3, the combination of single 
word QD-PageRanks to calculate the QD-PageRank for a multiple word query is only 
an approximation, made for practical reasons. This approximation is worse when the 
words are highly dependent. Further, some queries, such as “ financial aid”  have a 
different intended meaning as a phrase than simply the two words “ financial”  and 
“ aid” . For queries such as these, the words are highly dependent. We could partially 
overcome this difficulty by adding the most common phrases to the lexicon, thus 
treating them the same as single words. 

6 Conclusions 

In this paper, we introduced a model that probabilistically combines page content and 
link structure in the form of an intelligent random surfer. The model can accommo-
date essentially any query relevance function in use today, and produces higher-
quality results than PageRank, while having time and storage requirements that are 
within reason for today’ s large scale search engines. 
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