
The Intelligent Surfer:
Probabilistic Combination of Link and

Content Information in PageRank

 Matthew Richardson Pedro Domingos

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195-2350, USA

{mattr, pedrod}@cs.washington.edu

Abstract

The PageRank algorithm, used in the Google search engine, greatly
improves the results of Web search by taking into account the link
structure of the Web. PageRank assigns to a page a score propor-
tional to the number of times a random surfer would visit that page,
if it surfed indefinitely from page to page, following all outlinks
from a page with equal probability. We propose to improve Page-
Rank by using a more intelligent surfer, one that is guided by a
probabilistic model of the relevance of a page to a query. Efficient
execution of our algorithm at query time is made possible by pre-
computing at crawl time (and thus once for all queries) the neces-
sary terms. Experiments on two large subsets of the Web indicate
that our algorithm significantly outperforms PageRank in the (hu-
man-rated) quality of the pages returned, while remaining efficient
enough to be used in today’s large search engines.

1 Introduction

Traditional information retrieval techniques can give poor results on the Web, with
its vast scale and highly variable content quality. Recently, however, it was found
that Web search results can be much improved by using the information contained in
the link structure between pages. The two best-known algorithms which do this are
HITS [1] and PageRank [2]. The latter is used in the highly successful Google search
engine [3]. The heuristic underlying both of these approaches is that pages with many
inlinks are more likely to be of high quality than pages with few inlinks, given that
the author of a page will presumably include in it links to pages that s/he believes are
of high quality. Given a query (set of words or other query terms), HITS invokes a
traditional search engine to obtain a set of pages relevant to it, expands this set with
its inlinks and outlinks, and then attempts to find two types of pages, hubs (pages
that point to many pages of high quality) and authorities (pages of high quality). Be-
cause this computation is carried out at query time, it is not feasible for today’s
search engines, which need to handle tens of millions of queries per day. In contrast,
PageRank computes a single measure of quality for a page at crawl time. This meas-

ure is then combined with a traditional information retrieval score at query time.
Compared with HITS, this has the advantage of much greater efficiency, but the dis-
advantage that the PageRank score of a page ignores whether or not the page is rele-
vant to the query at hand.

Traditional information retrieval measures like TFIDF [4] rate a document highly if
the query terms occur frequently in it. PageRank rates a page highly if it is at the cen-
ter of a large sub-web (i.e., if many pages point to it, many other pages point to
those, etc.). Intuitively, however, the best pages should be those that are at the center
of a large sub-web relevant to the query. If one issues a query containing the word
jaguar, then pages containing the word jaguar that are also pointed to by many other
pages containing jaguar are more likely to be good choices than pages that contain
jaguar but have no inlinks from pages containing it. This paper proposes a search
algorithm that formalizes this intuition while, like PageRank, doing most of its com-
putations at crawl time. The PageRank score of a page can be viewed as the rate at
which a surfer would visit that page, if it surfed the Web indefinitely, blindly jump-
ing from page to page. Our algorithm does something closer to what a human surfer
would do, jumping preferentially to pages containing the query terms.

A problem common to both PageRank and HITS is topic drift. Because they give the
same weight to all edges, the pages with the most inlinks in the network being con-
sidered (either at crawl or query time) tend to dominate, whether or not they are the
most relevant to the query. Chakrabarti et al. [5] and Bharat and Henzinger [6] pro-
pose heuristic methods for differentially weighting links. Our algorithm can be
viewed as a more principled approach to the same problem. It can also be viewed as
an analog for PageRank of Cohn and Hofmann’s [7] variation of HITS. Rafiei and
Mendelzon's [8] algorithm, which biases PageRank towards pages containing a spe-
cific word, is a predecessor of our work. Haveliwala [9] proposes applying an opti-
mized version of PageRank to the subset of pages containing the query terms, and
suggests that users do this on their own machines.

We first describe PageRank. We then introduce our query-dependent, content-
sensitive version of PageRank, and demonstrate how it can be implemented effi-
ciently. Finally, we present and discuss experimental results.

2 PageRank : The Random Surfer

Imagine a web surfer who jumps from web page to web page, choosing with uniform
probability which link to follow at each step. In order to reduce the effect of dead-
ends or endless cycles the surfer will occasionally jump to a random page with some
small probability β, or when on a page with no out-links. To reformulate this in
graph terms, consider the web as a directed graph, where nodes represent web pages,
and edges between nodes represent links between web pages. Let W be the set of
nodes, N=|W|, Fi be the set of pages page i links to, and Bi be the set pages which
link to page i. For pages which have no outlinks we add a link to all pages in the
graph1. In this way, rank which is lost due to pages with no outlinks is redistributed
uniformly to all pages. If averaged over a sufficient number of steps, the probability
the surfer is on page j at some point in time is given by the formula:

 ∑
∈

+−=
jBi iF

iP

N
jP

)()1(
)(ββ

 (1)

1 For each page s with no outlinks, we set Fs={all N nodes}, and for all other nodes aug-
ment Bi with s. (Bi ∪ {s})

The PageRank score for node j is defined as this probability: PR(j)=P(j). Because
equation (1) is recursive, it must be iteratively evaluated until P(j) converges. Typi-
cally, the initial distribution for P(j) is uniform. PageRank is equivalent to the pri-
mary eigenvector of the transition matrix Z:

 M
N

Z
NxN

ββ +



−= 1

)1(,with






=

otherwise 0

 to from edge an is thereif
1

ji
FM iji (2)

One iteration of equation (1) is equivalent to computing xt+1=Zxt, where xj
t=P(j) at

iteration t. After convergence, we have xT+1=xT, or xT=ZxT, which means xT is an
eigenvector of Z. Furthermore, since the columns of Z are normalized, x has an ei-
genvalue of 1.

3 Directed Surfer Model

We propose a more intelligent surfer, who probabilistically hops from page to page,
depending on the content of the pages and the query terms the surfer is looking for.
The resulting probability distribution over pages is:

 ∑
∈

→+′−=
jBi

qqqq jiPiPjPjP)()()()1()(ββ (3)

where Pq(i→j) is the probability that the surfer transitions to page j given that he is
on page i and is searching for the query q. Pq’(j) specifies where the surfer chooses to
jump when not following links. Pq(j) is the resulting probability distribution over
pages and corresponds to the query-dependent PageRank score (QD-PageRankq(j) ≡
Pq(j)). As with PageRank, QD-PageRank is determined by iterative evaluation of
equation 3 from some initial distribution, and is equivalent to the primary eigenvec-
tor of the transition matrix Zq, where ∑

∈
→+′−=

j

ji
Bi

qqq jiPjPZ)()()1(ββ . Although

Pq(i→j) and Pq’(j) are arbitrary distributions, we will focus on the case where both
probability distributions are derived from Rq(j), a measure of relevance of page j to
query q:

∑
∈

=′

Wk
q

q
q kR

jR
jP

)(

)(
)(

∑
∈

=→

iFk
q

q
q kR

jR
jiP

)(

)(
)((4)

In other words, when choosing among multiple out-links from a page, the directed
surfer tends to follow those which lead to pages whose content has been deemed
relevant to the query (according to Rq). Similarly to PageRank, when a page’s out-
links all have zero relevance, or has no outlinks, we add links from that page to all
other pages in the network. On such a page, the surfer thus chooses a new page to
jump to according to the distribution Pq’ (j).

When given a multiple-term query, Q={q1,q2,…}, the surfer selects a q according to
some probability distribution, P(q) and uses that term to guide its behavior (accord-
ing to equation 3) for a large number of steps1. It then selects another term according
to the distribution to determine its behavior, and so on. The resulting distribution
over visited web pages is QD-PageRankQ and is given by

1 However many steps are needed to reach convergence of equation 3.

 ∑
∈

=≡−
Qq

qQ jPqPjPj)()()()(PageRankQD Q (5)

For standard PageRank, the PageRank vector is equivalent to the primary eigenvector
of the matrix Z. The vector of single-term QD-PageRankq is again equivalent to the
primary eigenvector of the matrix Zq. An interesting question that arises is whether
the QD-PageRankQ vector is equivalent to the primary eigenvector of a matrix

∑
∈

=
Qq

qQ qP ZZ)((corresponding to the combination performed by equation 5). In

fact, this is not the case. Instead, the primary eigenvector of ZQ corresponds to the
QD-PageRank obtained by a random surfer who, at each step, selects a new query
according to the distribution P(q). However, QD-PageRankQ is approximately equal
to the PageRank that results from this single-step surfer, for the following reason.

Let xq be the L2-normalized primary eigenvector for matrix Zq (note element j of xq
is QD-PageRankq(j)), thus satisfying xi=Tixi. Since xq is the primary eigenvector for

Zq, we have [10]: rqqqQrq xZxZ ≥∈∀ :, . Thus, to a first degree of approxima-

tion, qq
Qr

rq xZxZ κ≈∑
∈

. Suppose P(q)=1/|Q|. Consider ∑
∈

=
Qq

qQ qP xx)((see equation

5). Then

() Q
Qq

q
Qq

qq
Qq Qr

rq
Qq

q
Qq

qQQ nQQQQ
xxxZxZxZxZ

κκκ ∑∑∑ ∑∑∑
∈∈∈ ∈∈∈

==≈





=















= 111

and thus xQ is approximately an eigenvector for ZQ. Since xQ is equivalent to QD-
PageRankQ, and ZQ describes the behavior of the single-step surfer, QD-PageRankQ
is approximately the same PageRank that would be obtained by using the single-step
surfer. The approximation has the least error when the individual random surfers de-
fined by Zq are very similar, or are very dissimilar.

The choice of relevance function Rq(j) is arbitrary. In the simplest case, Rq(j)=R is
independent of the query term and the document, and QD-PageRank reduces to Page-
Rank. One simple content-dependent function could be Rq(j)=1 if the term q appears
on page j, and 0 otherwise. Much more complex functions could be used, such as the
well-known TFIDF information retrieval metric, a score obtained by latent semantic
indexing, or any heuristic measure using text size, positioning, etc…. It is important
to note that most current text ranking functions could be easily incorporated into the
directed surfer model.

4 Scalability

The difficulty with calculating a query dependent PageRank is that a search engine
cannot perform the computation, which can take hours, at query time, when it is ex-
pected to return results in seconds (or less). We surmount this problem by precom-
puting the individual term rankings QD-PageRankq, and combining them at query
time according to equation 5. We show that the computation and storage require-
ments for QD-PageRankq for hundreds of thousands of words is only approximately
100-200 times that of a single query independent PageRank.

Let W={q1, q2, …, qm} be the set of words in our lexicon. That is, we assume all
search queries contain terms in W, or we are willing to use plain PageRank for those
terms not in W. Let dq be the number of documents which contain the term q. Then

∑
∈

=
Wq

qdS is the number of unique document-term pairs.

4.1 Disk Storage

For each term q, we must store the results of the computation. We add the minor re-
striction that a search query will only return documents containing all of the terms1.
Thus, when merging QD-PageRankq’s, we need only to know the QD-PageRankq for
documents that contain the term. Each QD-PageRankq is a vector of dq values. Thus,
the space required to store all of the PageRanks is S, a factor of S/N times the query
independent PageRank alone (recall N is the number of web pages). Further, note
that the storage space is still considerably less than that required for the search en-
gine’s reverse index, which must store information about all document-term pairs, as
opposed to our need to store information about every unique document term pair.

4.2 Time Requirements

If Rq(j)=0 for some document j, the directed surfer will never arrive at that page. In
this case, we know QD-PageRankq(j)=0, and thus when calculating QD-PageRankq,
we need only consider the subset of nodes for which Rq(j)>0. We add the reasonable
constraint that Rq(j)=0 if term q does not appear in document j, which is common for
most information retrieval relevance metrics, such as TFIDF. The computation for
term q then only needs to consider dq documents. Because it is proportional to the
number of documents in the graph, the computation of QD-PageRankq for all q in W
will require O(S) time, a factor of S/N times the computation of the query independ-
ent PageRank alone. Furthermore, we have noticed in our experiments that the com-
putation converges in fewer iterations on these smaller sub-graphs, empirically re-
ducing the computational requirements to 0.75*S/N. Additional speedup may be de-
rived from the fact that for most words, the sub-graph will completely fit in memory,
unlike PageRank which (for any large corpus) must repeatedly read the graph struc-
ture from disk during computation.

4.3 Empirical Scalabil ity

The fraction S/N is critical to determining the scalability of QD-PageRank. If every
document contained vastly different words, S/N would be proportional to the number
of search terms, m. However, this is not the case. Instead, there are a very few words
that are found in almost every document, and many words which are found in very
few documents2; in both cases the contribution to S is small.

In our database of 1.7 million pages (see section 5), we let W be the set of all unique
words, and removed the 100 most common words3. This results in |W|=2.3 million
words, and the ratio S/N was found to be 165. We expect that this ratio will remain
relatively constant even for much larger sets of web pages. This means QD-
PageRank requires approximately 165 times the storage space and 124 times the
computation time to allow for arbitrary queries over any of the 2.3 million words
(which is still less storage space than is required by the search engine’s reverse index
alone).

1 Google has this “feature” as well. See http://www.google.com/technology/whyuse.html.
2 This is because the distribution of words in text tends to follow an inverse power law
[11]. We also verified experimentally that the same holds true for the distribution of the
number of documents a word is found in.
3 It is common to remove “stop” words such as the, is, etc., as they do not affect the
search.

5 Results

We give results on two data sets: educrawl, and WebBase. Educrawl is a crawl of the
web, restricted to .edu domains. The crawler was seeded with the first 18 results of a
search for “ University” on Google (www.google.com). Links containing “ ?” or “ cgi-
bin” were ignored, and links were only followed if they ended with “ .html” . The
crawl contains 1.76 million pages over 32,000 different domains. WebBase is the first
15 million pages of the Stanford WebBase repository [12], which contains over 120
million pages. For both datasets, HTML tags were removed before processing.

We calculated QD-PageRank as described above, using Rq(j) = the fraction of words
equal to q in page j, and P(q)=1/|Q|. We compare our algorithm to the standard Pag-
eRank algorithm. For content ranking, we used the same Rq(j) function as for QD-
PageRank, but, similarly to TFIDF, weighted the contribution of each search term by
the log of its inverse document frequency. As there is nothing published about merg-
ing PageRank and content rank into one list, the approach we follow is to normalize
the two scores and add them. This implicitly assumes that PageRank and content rank
are equally important. This resulted in poor PageRank performance, which we found
was because the distribution of PageRanks is much more skewed than the distribution
of content ranks; normalizing the vectors resulted in PageRank primarily determining
the final ranking. To correct this problem, we scaled each vector to have the same
average value in its top ten terms before adding the two vectors. This drastically im-
proved PageRank.

For educrawl, we requested a single word and two double word search queries from
each of three volunteers, resulting in a total of nine queries. For each query, we ran-
domly mixed the top 10 results from standard PageRank with the top 10 results from
QD-PageRank, and gave them to four volunteers, who were asked to rate each search
result as a 0 (not relevant), 1 (somewhat relevant, not very good), or 2 (good search
result) based on the contents of the page it pointed to. In Table 1, we present the final
rating for each method, per query. This rating was obtained by first summing the rat-
ings for the ten pages from each method for each volunteer, and then averaging the
individual ratings. A similar experiment for WebBase is given in Table 2. For Web-
Base, we randomly selected the queries from Bharat and Henzinger [6]. The four
volunteers for the WebBase evaluation were independent from the four for the
educrawl evaluation, and none knew how the pages they were asked to rate were ob-
tained.

Table 1: Results on educrawl Table 2: Results on WebBase

Query QD-PR PR Query QD-PR PR

chinese association 10.75 6.50 alcoholism 11.50 11.88
computer labs 9.50 13.25 architecture 8.45 2.93
financial aid 8.00 12.38 bicycling 8.45 6.88
intramural 16.5 10.25 rock climbing 8.43 5.75
maternity 12.5 6.75 shakespeare 11.53 5.03
president office 5.00 11.38 stamp collecting 9.13 10.68
sororities 13.75 7.38 vintage car 13.15 8.68
student housing 14.13 10.75 Thailand tourism 16.90 9.75
visitor visa 19.25 12.50 Zen Buddhism 8.63 10.38

Average 12.15 10.13 Average 10.68 7.99

QD-PageRank performs better than PageRank, accomplishing a relative improvement
in relevance of 20% on educrawl and 34% on WebBase. The results are statistically
significant (p<.03 for educrawl and p<.001 for WebBase using a two-tailed paired t-
test, one sample per person per query). Averaging over queries, every volunteer
found QD-PageRank to be an improvement over PageRank, though not all differ-
ences were statistically significant.

One item to note is that the results on multiple word queries are not as positive as the
results on single word queries. As discussed in section 3, the combination of single
word QD-PageRanks to calculate the QD-PageRank for a multiple word query is only
an approximation, made for practical reasons. This approximation is worse when the
words are highly dependent. Further, some queries, such as “ financial aid” have a
different intended meaning as a phrase than simply the two words “ financial” and
“ aid” . For queries such as these, the words are highly dependent. We could partially
overcome this difficulty by adding the most common phrases to the lexicon, thus
treating them the same as single words.

6 Conclusions

In this paper, we introduced a model that probabilistically combines page content and
link structure in the form of an intelligent random surfer. The model can accommo-
date essentially any query relevance function in use today, and produces higher-
quality results than PageRank, while having time and storage requirements that are
within reason for today’ s large scale search engines.

Acknowledgments

We would like to thank Gary Wesley and Taher Haveliwala for their help with Web-
Base, Frank McSherry for eigen-help, and our experiment volunteers for their time.
This work was partially supported by NSF CAREER and IBM Faculty awards to the
second author.

References

[1] J. M. Kleinberg (1998). Authoritative sources in a hyperlinked environment. Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd (1998). The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford University, Stanford, CA.

[3] S. Brin and L. Page (1998). The anatomy of a large-scale hypertextual Web search engine.
Proceedings of the Seventh International World Wide Web Conference.

[4] G. Salton and M. J. McGill (1983). Introduction to Modern Information Retrieval.
McGraw-Hill, New York, NY.

[5] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan (1998).
Automatic resource compilation by analyzing hyperlink structure and associated text. Pro-
ceedings of the Seventh International World Wide Web Conference.

[6] K. Bharat and M. R. Henzinger (1998). Improved algorithms for topic distillation in a hy-
perlinked environment. Proceedings of the Twenty-First Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.

[7] D. Cohn and T. Hofmann (2001). The missing link - a probabilistic model of document
content and hypertext connectivity. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13. MIT Press, Cambridge, MA.

[8] D. Rafiei and A. Mendelzon (2000). What is this page known for? Computing web page
reputations. Proceedings of the Ninth International World Wide Web Conference.

[9] T. Haveliwala (1999). Efficient computation of PageRank. Technical report, Stanford Uni-
versity, Stanford, CA.

[10] G. H. Golub and C. F. Van Loan (1996). Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, third edition.

[11] G. K. Zipf (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley,
Cambridge, MA.

[12] J. Hirai, S. Raghaven, H. Garcia-Molina, A. Paepcke (1999). WebBase: a repository of
web pages. Proceedings of the Ninth World Wide Web Conference.

