Password Management

Matt Bishop
Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755

Abstract: Issues of password management are among the
most vexing in systems administration and computer secu-
rity, and among the most difficult to solve. This paper sur-
veys some of the mechanisms that have been proposed in the
past, and compares their effectiveness.

1 Introduction

Probably the most common technique for user authentication
is the use of passwords. The goal of this paper is to survey
different techniques for associating passwords with users,
and for maintaining that association. General requirements
for determining if a password scheme is adequate are dis-
cussed elsewhere [1] and will not be repeated.

The first problem is that of password selection. Experiments
conducted at Bell Laboratories [2], the Software Engineering
Institute [3], and other places all confirm that a disturbingly
large percentage of users’ passwords can be guessed easily.
Gaining access to a system is the first step to penetrating it,
and so the first issue relevant to password management is the
selection, or assignment, of a password that is sufficiently
hard to guess so as to deter attacks.

The second problem is that of managing data associated with
passwords to enable the system to determine if a user has
entered the correct password. This data must be on-line
somewhere, yet either must be unobtainable or else worthless
should an attacker obtain it. This raises a number of interest-
ing issues which will be explored.

We begin with a simple mathematical model of pasword sys-
tems to provide a framework for discussion. We then con-
sider the password selection problem and the password
management problem.

2 Password Systems

A password system is the embodiment of that information

‘Ihe support of grant NAG 2-628 from the National Acronautics and
Space Administration to Dastmouth College is gratefully acknowledged.

CH2961-1/91/0000/0167$01.00 © 1991 |IEEE

161

required by both the user and a computer system o authenti-
cate the user with a degree of assurance sufficient to the com-
puter system (and vice versa). It is composed of a set P of
data called passwords; for our purposes we shall require ele-
ments of this set to be strings of characters (bits), but the gen-
eral model does not require this. Each element p € P has
associated with it complementary datap € P which is gener-
ated by a complementation function c:P— P and is stored on
the computer system. The user selects, or is assigned, a pass-
word from P using a selection function s. When the user
enters a password, the system retrieves the complementary
data associated with the user and applies a password function
£Px P-(0,1} to both. If the complementary data is gener-
ated by applying the complementation function to the sup-
plied password, the password function returns 1 to indicate
the user has been authenticated; otherwise, it returns 0.

Although the most common set from which passwords are
drawn is the set of strings of at most some fixed length, nothe
that this model encompasses other types of systems as well.
For example, consider the challenge-response protocol
[4][5), in which the user is sent a random string from the
computer and must transform it according to an algorithm
known to the user and the computer. Here, P is the set of pos-
sible algorithms, P the set of their inversions (or the same set
as P, depending upon implementation), C the set containing
the identity mapping(or containing the function to derive
inverse transformations), § the set of algorithm choosing
functions (which the user uses to select a transformation),
and F the set of functions that compart the result of applying
an element of P to the random string, to the result sent by the
user (or that apply elements of P to the result sent by the user
and compare it to the random string).

This model differs from the one in [4] by considering the
non-cryptographic elements, namely password selection (the
elements of the set S) and management of the password com-
plements (the elements of the set P). In this paper, we outline
considerations when selecting the set S and when choosing

techniques to manage elements of P,

3 Password Selection

The set § contains the functions used to select passwords.
Elements of this set are implemented by programs called
password changers. 1deally, these changers force selection of
an element p € P under a uniform random distribution, so no
one element is any more likely than another. Hence should a
user try to guess a password (called a trial and error atiack),
on the average P2 potential passwords must be tested.

These pasword changers are invoked either by the user or the
system, and reset the user’s password. The specific password
associated with the user can either be assigned by the system
or selected by the user. Both schemes have advantages and
disadvantages.

Computer selection of passwords is recommended by the
Department of Defense [6], among others. Such a scheme
requires first, that the computer be able to generate a large
enough set of passwords to make exhaustive search attacks
infeasible; typically, this is done by producing passwords of
random characters. The problem with using random pass-
words is that humans can repeat with perfect accuracy about
8 meaningful items (such as digits, letters, or words) [7]. If a
random password were assigned for each system on which
the user had an account, most users would soon be over-
whelmed with the amount of random information they would
need to remember.

Two sets of techniques are used to ameliorate this problem.
The first is to accept the random nature of the passwords and
devise a scheme to allow users to write them down. A typical
example is to augment the selection of a password with a
simple transformation, and then allow the user to write down
the transformed password. To determine the pasword that
must be entered, the user simply inverts the transformation.
So, if P is the set of all strings of characters with length no
greater than 8, and the transformation is to capitalize the first
letter and add a hyphen at the end, the written-down pass-
word “freem3” would correspond to the actual password
“frEem3-" [8). These schema are similar to the challenge-
response protocols, as well as to the use of pass algorithms
(5).

The second set is to provide an alternate alphabet for the
passwords. Again using the string example, each random
character (or sets of characters) are mapped into one of a set
of syllables [9]. This creates longer passwords, but fewer
random “chunks,” and hence can be remembered more eas-
ily. When used in conjunction with key crunching[10], such
mechanisms can ensure that P is the same size as if it were
the set of random strings of some (smaller) fixed length. But
if no associations can be made, these passwords are equiva-
lent to random passwords.

The limits on human memory are one of the reasons that
allowing users to select their own passwords is so attractive;
unfortunately, this technique suffers from numerous draw-
backs, such as the difficulty of choosing passwords that are

168

difficult to guess. Hence unconstrained choice is rare; usually
some restrictions, requiring a mixture of case, non-alphabetic
characters, and/or length are required (for example, see the
passwd manal page in [11]). Various papers have suggested
techniques for good passwords; unfortunately, their recom-
mendations are followed all too infrequently.

Perhaps the most exciting idea in this area is the use of a very
rigorous password checker. Such a program, called a proac-
tive password checker [1][12], allows the system administra-
tor to constrain the user’s choice of passwords on a per-site,
per-group, per-project, and per-user basis. Tests used may
involve not only arbitrary lists, but also patterns, output of
programs, and personnel databases. The tests are also very
flexible and may be changed without recompiling the pro-
gram,; this allows very quick reconfiguration of the password
changer.

Although not strictly related to password selection, the idea
of password aging deserves some mention. Password aging
is the technique of allowing passwords to be unchanged for
a limited time; when that limit is reached, the user must
change the password before he will be able to complete the

‘login procedure. Its intent is to hinder an exhaustive search

by requiring users to change their password before any
attacker can guess it. Like computer-generated passwords, it
is recommended by [6).

Simple-minded implementations of password aging are
worthless, because users will simply change their password
and then change it back. More sophisticated implementations
require the new password to remain in effect for some time
before it can be changed again (for example, see [13]);
should the password be cracked (guessed) within this time,
the user must ask the system administrator to change it.

A very serious problem with many password aging mecha-
nisms is the lack of warning users receive before their pass-
word is to expire. Surprising users with an insistence they
change their passwords during the login procedure denies
then the time to think about choosing a good one; it has been
observed [14] that systems with password aging often have
very easy to guess passwords. So, if password aging is used,
password choices should be screened very carefully, and
users should be given plenty of notice before their password
expires.

4 Password Management

Elements of the set P must be stored in a way accessible to
the system. We assume for this discussion that the comple-
mentation functions are one-way and hence not invertible;
therefore, given some p € P, one cannot determine any pass-
word p € P for which c(p) = p except by trial and error. Trial
and error attacks cannot be prevented because the attacker
can simply use standard login authentication procedures;
however, such repeated attempts to login will attract atten-
tion (at least on systems where security is at all a consider-
ation). Therefore, proper management techniques should
prevent attackers from performing trial and error attacks in

any other way. This can be done by hiding the complemen-
tation function used, or hiding the complementary data.

The first technique requires that the attacker be forced to
use the standard login procedure rather than a speeded-up
version. For example, if the user has access to the comple-
mentary data and knows the complementation function, he
can move the data off-line and re-implement the comple-
mentation function. Trial and error testing then becomes
simple. UNIX systems are particularly susceptible to this
attack, as the complementation function is well known (and
has in fact been speeded up significantly; see [15] and [16])
and the complementary data is kept in a world-readable
file.

The second technique simply denies the attacker the data
needed to test his guesses during a trial and error attack.
Kerberos [17] relies on this technique, in that it storeds the
complementary data in a physically secure authentication
server not accessible to the user community except through
the authentication protocols. So-called shadow password
files in UNIX systems (see [3]), which put the complemen-
tary data associated with each user in an unreadable file,
also use this approach.

In challenge-response protocols, the password manage-
ment problem becomes one of managing algorithms rather
than strings. Provided the algorithms are chosen from arich
enough set, this tan be made very difficult by storing the
algorithm only in an executing program and protecting
memory. It is (usually) much easier to steal a file from a
computer system than to steal a copy of the memory image
of a process.

5 Conclusion

This paper has very briefly discussed two of the most prob-
lematic, and yet vital, of the parts of password systems.
Using a simple yet powerful model, we have described
ways to select passwords and identified two techniques to
hinder the compromise of a system by guarding the infor-
mation and algorithms used to validate user passwords.

Obtaining access to a system, or to resources on the system,
is the first step in attacking the system. Penetration by
obtaining, or guessing, a password is a time-honored, and
extremely effective, technique for gaining such access; so
a firm understanding of passwords, their uses, and tech-
niques for password management are essential to the secu-
rity of any computer system.

References

{1] M. Bishop, “Password Checking Techniques,” Pro-
ceedings of the Workshop on Computer Incident Han-
dling (June 1990) pp. III-D-1:4.

(2] R. Morris and K. Thompson, “Password Security: A
Case History,” Communications of the ACM 22(11)
(Nov. 1979) pp. 594-597.

131 D. Klein, “Foiling the Cracker: A Survey of, and

169

Improvements to, Password Security,” Proceedings of
the UNIX Security Workshop IT (Aug. 1990) pp. 5-14.

[4] G. Brassard, Modern Cryptography: A Tutorial,
Springer-Verlag, New York City, NY (1988).

(5] J. Haskett, “Pass-Algorithms: A User Validation
Scheme Based on Knowledge of Secret Algorithms,”
Communications of the ACM 27(8) (Aug. 1984) pp.
771-784.

{61 Department of Defense Password Management Guide,
CSC-STD-002-85 (Apr. 12, 1990).

(7] G.Miller, “The Magical Number Seven Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information,” Psychological Review 63 (1956) pp. 81-
97, cited in [18].

[8] M. Crabbe, “Password Security in a Large Distributed
Environment,” Proceedings of the UNIX Security
Workshop I (Aug. 1990) pp. 17-30.

[9] M. Gasser, “A Random Word Generator for Pro-
nounceable Passwords,” ESD-TR-75-97, Electronic
Systems Division, Hanscom Air Force Base, Bedford,
MA (Nov. 1975).

[10]L. Grant, “DES Key Crunching for Safer Cipher
Keys,” SIG Security Audit and Control Review 5(3)
(Summer 1987) pp. 9-16.

[111UNIX Users' Reference Manual, 4.3 Berkeley Soft-
ware Distribution, Virtual VAX-11 Version, Computer
Systems Research Group, Computer Science Divicion,
Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720
(Apr. 1986).

[12)M. Bishop, “A Proactive Password Checker,” PCS-
TR90-152, Department of Mathematics and Computer
Science, Dartmouth College, Hanover, NH 03755
(June 1990).

(13]P. Wood and S. Kochan, UNIX System Security, Hay-
den Books, Indianapolis, IN 46268 (1985).

[14]F. Grampp and R. Morris, “UNIX Operating System
Security,” AT&T Bell Laboratories Technical Journal
63(8) part 2 (Oct. 1984) pp. 1649-1672.

[15] M. Bishop, “An Application of a Fast Data Encryption
Standard Implementation,” Computing Systems 1(3)
(Summer 1988) pp. 221-254.

[16] D. Feldmeier, “A High-Speed Crypt Implementation,”
to appear in the Proceedings of Crypto ‘90.

[171). Steiner, C. Neuman, and J. Schiller, “Kerberos: An
Authentication System for Open System Networks,”
USENIX Conference Proceedings (Winter 1988), pp.
191-202.

(18]C. Coombs, R. Dawes, and A. Tversky, Mathematical
Psychology: An Elementary Introduction, Mathesis
Press, Ann Arbor, MI (1981).

