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ABSTRACT

People find it difficult to create and maintain abstractions. We often deal with abstract

tasks by using notations that make the structure of the abstraction visible. PBE systems

sometimes make it more difficult to create abstractions. The user has to second-guess

the results of the inference algorithm, and sometimes cannot see any visual

representation of the inferred result, let alone manipulate it easily. SWYN (See What

You Need) addresses these issues in the context of constructing regular expressions

from examples. It provides a visual representation that has been evaluated in empirical

user testing, and an induction interface that always allows the user to see and modify

the effects of the supplied examples. The results demonstrate the potential advantages

of more strictly applying cognitive dimensions analysis and direct manipulation

principles when designing systems for programming by example.

INTRODUCTION

Most programming tasks involve the creation of abstractions. These can be broadly categorised into two

kinds: abstractions over context and abstractions over time. An abstraction over context defines some

category of situations – objects or data – and allows the programmer to define operations on all members

of that category. An abstraction over time defines events that will happen in the future as a result of the

present actions of the programmer. Both of these are potentially labour-saving devices. A good

abstraction can be used as a kind of mental shorthand for interacting with the world.

However creating abstractions is difficult and risky (Green & Blackwell 1996, Blackwell & Green 1999).

This is why programming by example (PBE) seems like such a good idea. It is computationally feasible to

derive an abstraction from induction over a set of examples. If the abstraction is over context, the

examples might include selections of words within a document or files within a directory structure. If the
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abstraction is over time, the examples can be demonstrations of the actions that the program ought to carry

out in the future.

Factors in the usability of PBE systems

The consequences for the user that result from this approach to programming can be discussed in terms of

Green’s framework for usability design of programming languages: the Cognitive Dimensions of

Notations (Green 1989, Green & Petre 1996, Green & Blackwell 1998). This chapter will not include an

extended presentation of the framework, as many published descriptions are available, but the resulting

analysis would include observations of the following kind: PBE offers superb closeness of mapping

between the programming environment and the task domain, because in PBE the task domain is the

programming environment. However PBE imposes severe premature commitment – the PBE programmer

must specify actions in exactly the same order that the program is to execute them, unlike conventional

programming languages. A full cognitive dimensions analysis of PBE systems would be enlightening: they

are likely to be error-prone, for example, and it is often difficult to apply secondary notation such as

comments to explain why a particular abstraction was created.

As with all programming languages, most designs for PBE systems have both advantages and

disadvantages. No programming language can be the “best” language, because while some tasks are made

easier by one language feature, the same feature can make other tasks more difficult (Green, Petre &

Bellamy 1991). In the case of PBE systems, a critical feature of this type is the question of whether a

representation of the inferred program should be made visible to the user. This is the cognitive dimension

of visibility. Some ordinary programming environments make it difficult to see the whole program at once,

but there are PBE systems where the program is completely invisible, on the grounds that the

programming process should be completely transparent to the user. These systems create abstractions by

induction from examples, but the programmer is unable to see those abstractions. This disadvantage of

this approach is that it results in concomitant degradation in other dimensions. An invisible abstraction

exhibits high viscosity (resistance to change) because it is difficult to change something that you cannot

see, and any relationships between different abstractions are certain to create hidden dependencies if the

abstractions themselves are invisible.

The user’s experience of programming by example if there is no access to a visible representation of the

inferred program might be compared to repairing a loose part inside a closed clock by shaking the clock –

you know that everything you do has some effect, but you don’t know what that effect has been until you

see and hear it working. If the clock is very simple on the inside, and you understand how it works, it

might be possible to succeed. Unfortunately, the most powerful programming by example systems employ

sophisticated inference algorithms such that it can be quite difficult to anticipate the effect of adding one

more instructional trace. The task of constructing a training set for these algorithms can be difficult for a

computer scientist – for an end-user, the clock-shaking analogy may be an apt description of the

experience of programming by example without a program representation. Other chapters in this book,

including (*** Insert reference to chapter by Myers and McDaniel***) and (*** Insert reference to

chapter by Wolber and Myers ***) have referred to the problem of “feedback” in PBE, but analysis in

terms of cognitive dimensions makes it clear that the problem is far more extensive than simply a question

of feedback.
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A test case for visibility in PBE

This chapter describes an investigation of a very simple experimental case that has been chosen to test the

preceding argument. The programming domain is that of the earliest types of PBE system – simple text

processing, in which text strings are identified by example, in order to be transformed in a systematic way.

The simplest example of such a transformation is a search and replace operation. Even search and replace

can be regarded as programming, because it is an abstraction-creating activity. The search expression is a

transient abstraction over occurrences of some string in a document, although this “program” is usually

discarded immediately after it has been executed.

However straightforward search and replace is not a very interesting task in programming terms. A more

interesting case is where the search expression includes wildcards, especially the extended types of

wildcard matching that are provided by regular expressions. Regular expressions have interesting

computational properties, are widely used in powerful programmers’ editors, and are of interest in a

machine learning context because the acquisition of regular expressions from examples is a non-trivial

induction problem. Furthermore, regular expressions can be used as the core of a powerful language for

specifying text processing scripts, as in sed, awk or the Perl language (Wall et. al. 1996).

Regular expressions are also interesting from the perspective of usability. In a system where regular

expressions can be inferred from examples, it is still not clear that users will benefit from being shown the

resulting expression. This is not because it is a bad thing for users to see the result of PBE inference, but

because regular expressions themselves are confusing and difficult to read. They appear to be one of the

features of Perl that is most difficult for users: popular Perl texts such as Christiansen and Torkington

(1998) or Herrman (1997) preface their chapters on regular expressions with grim warnings about the

difficulties that are in store for the reader. A brief analysis in terms of Cognitive Dimensions of Notations

suggests that the problems with regular expressions may be a result of the notational conventions.

Green (personal communication) points out that the conventional regular expression notation is difficult to

parse for a number of reasons:

• because some of the symbols are ill-chosen (notably / and \);

• because the indication of scope by paired elements such as () {} [] is likely to cause perceptual

problems;

• because the targets to be matched and the control characters describing the match requirements are

drawn from the same alphabet; and

• because the notation is extremely terse; discriminability is reduced and redundancy is very low, so

that in general a small random change produces a new well-formed expression rather than a syntax

error.

Furthermore, there is no clear mental model for the behaviour of the expression evaluator. If the notation

indicated some execution mechanism (Blackwell 1996) or allowed users to imagine executing it

themselves (Watt 1998), it could be more easily related to program behaviour. These considerations give

two potential avenues for improvement of regular expressions – both are tested in the experiment

described below.
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Summary of objectives

The system described in this chapter is named See What You Need (SWYN). It is able to infer regular

expressions from text examples in a context that improves visibility in several important ways:

• The user is always able to see the set of examples that the inference algorithm is using.

• The user is able to see the regular expression that has been inferred from the examples.

• The regular expression is displayed in a form that makes it easier to understand.

• The user is able to see the effect of the inferred expression in the context of the displayed data.

After the next section, which reviews other similar research, the body of the chapter describes three

important components of SWYN. The first is the method by which the user selects examples and reviews

the current effect of the inferred expression. The second is the induction algorithm that is used to infer and

update a regular expression based on those examples. The third is a visualisation technique that allows

users to review and directly modify the inferred expression.

OTHER PBE SYSTEMS FOR INFERRING REGULAR EXPRESSIONS

As described above, the inference of text transformations such as search and replace expressions was one

of the earliest applications of programming by example.

Nix’s “Editing by example” prototype (Nix 1985) allowed users to define input and output sample texts,

from which a general transformation was inferred. The user gave a command to execute the current

hypothesis, which resulted in a global search and replace according to the inferred hypothesis. The system

provided an undo facility to reverse the command if the hypothesis was incorrect.

Mo and Witten’s TELS system (Mo & Witten 1992, Witten & Mo 1993) could acquire complete

procedural sequences from examples, including series of cursor movements, insertions and deletions, in

addition to the search and replace functionality of Nix’s system. If inserted text varied between examples,

the inferred program would stop and invite the user to insert the required text, rather than try to infer the

text that was required.

Masui and Nakayama proposed the addition of a “repeat” key to a text editor, which would execute

dynamically created macros (Masui & Nakayama 1994). Their system continually monitored the user’s

actions, inferring general sequences. At any time, the user could press the repeat key, and the system

would respond by repeating the longest possible sequence of actions that had been inferred from the

immediately preceding input.

The acquired description of the input text in these systems is in the form of regular expressions (Nix uses

the term “gap expression” to describe a regular expression with additional specification of transformed

output text). It would be possible to display the inferences to the user in various forms, such as those

introduced later in this chapter. However previous systems that infer text editing programs from examples

have extremely poor visibility when considered as programming languages: they effectively hide the

completed program from the user. They require that the user work only by manipulating the data, with the

option of rejecting incorrect hypotheses after observing the results of executing an undesired inferred

program. Several previous programming by example systems have recognised this problem, and have

provided visual representations of the inferred program. Early systems include PURSUIT (Modugno &

Myers 1993) and Chimera (Kurlander & Feiner 1993), while SMARTedit, described elsewhere in this
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book (*** insert reference to chapter by Lau, Wolfman, Domingos & Weld ***), provides a highly

expressive program representation language.

Only one example-based text processing system has addressed the question of how textual inferences

should be presented to a user not having programming skills. In the Grammex (Grammar by Example)

system, also described in this book (*** insert reference to chapter by Lieberman, Nardi & Wright ***),

the user assigns meaningful names to the sub-expressions that have been inferred by the system. The result

is similar to the process followed when defining BNF grammars for language compilers. No attempt has

yet been made to evaluate the usability of the Grammex system, but some of the usability implications can

be anticipated on the basis of cognitive dimensions. A system in which the user must identify and name

the abstractions being created is abstraction hungry, and this property tends to constitute an initial

obstacle for inexperienced users. However the ability to create names is a simple but effective example of

secondary notation – allowing users to add their own information to the representation. An even more

valuable form of secondary notation would be the ability to add further annotations that could be used to

describe intended usage, design rationale, or other notes to future users.

A USER INTERFACE FOR CREATING REGULAR EXPRESSIONS FROM EXAMPLES

The usability improvements that SWYN aims to provide over previous demonstration-based systems are:

• that the user should be able to predict what inference will result from the selection of examples,

• that the inferred program should be visible to the user,

• that the user should be able to anticipate the effects of running the inferred program, and

• that the user should be able to modify the inferred program.

The initial state of the SYWN interface is a simple display of all the text that is a candidate for selection

by a regular expression. If integrated into a word processor as an advanced search and replace facility, the

display could simply be the regular word processor display, and SWYN could be invoked as a search and

replace mode analogous to the incremental search mode of the EMACS editor.
wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Figure 1 – selection set after choosing “wibble” as an example

The user starts to create the regular expression by choosing a string within the displayed text (dragging the

mouse over it). The chosen string is highlighted, and every other occurrence of the same string within the

text is also highlighted (in a different colour), as in figure 1. What the user sees is the set that would be

selected when executing the regular expression defined so far. Of course after choosing only a single
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example, the regular expression created so far is identical to the example, so all the highlighted strings are

the same.
wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Figure 2 – selection set after adding the new example “wibbne”

The user can then refine the regular expression by choosing another example - one that is not already

selected. The regular expression is modified by induction over the two chosen examples, using the

algorithm described in the next section. The highlighted selection set is immediately changed to show the

user the effect of this new regular expression, as in figure 2. At this point the selection set will be larger

than the initial selection set, because the regular expression is more general - it includes both chosen

examples, and possibly other strings sharing their common features, as described in the next section.
wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Figure 3 – selection set after adding the new example “wubble”

The user can continue to expand the definition of the regular expression by choosing further examples of

the kinds of string that should be selected. Every choice of a positive example results in a generalisation

of regular expression, and an increase in the size of the displayed selection set, as in figure 3. However the

user can also make the regular expression more specialised by choosing a negative example - a string that

should not be included in the selection set. Negative examples are chosen by highlighting them in a

different colour - currently red rather than the green of positive examples (although this brings obvious

usability problems for colour-blind users). When a negative example is chosen, the regular expression is

modified by performing induction on a negative example, and this will have the effect of making the

regular expression more specialised, as described in the next section. The size of the current selection set

will therefore be reduced after choosing a negative example, as shown in figure 4.
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wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Figure 4 – selection set after choosing a negative example “wobble”

The ability to choose negative examples is an extremely valuable way to improve the usability of PBE

systems. Much research into the acquisition of programs from examples has concentrated on the

theoretical problem of inference from positive examples only (e.g. Angluin 1980). Induction algorithms

can be made more efficient and accurate when they have access to negative examples, so training sets can

be defined more quickly (Dietterich & Michalski 1984). Furthermore people naturally describe contextual

abstractions in terms of negative exemplars. Human definitions of conceptual categories often employ

negative exemplars to describe an excluded category (Johnson-Laird 1983). In the context of SWYN, the

ability to work from negative examples also provides an important feature of direct manipulation – the

effect of actions should not only be immediately visible, but easily reversible (Shneiderman 1983). If I

choose an example string that causes the selection set to become too general, it is easy and natural to point

to a string that should not have been selected, and allow the induction algorithm to correct the problem

through specialisation of the regular expression.

Future versions of SWYN will add a further means of choosing examples. The probabilistic induction

algorithm described at the end of the next section is able to identify strings that are borderline cases - the

user may or may not want them included. If the system knew which the user wanted, this would allow the

induction algorithm to remove ambiguities from the regular expression. Borderline cases would be

highlighted in a different colour from the rest of the selection set, giving a cue to the user of the best way

to refine the regular expression. The user can then decide on the appropriate action for each borderline

case, simply choosing them as negative or positive examples in the usual way.

A HEURISTIC ALGORITHM FOR REGULAR EXPRESSION INFERENCE

The current implementation of the inference algorithm used in SWYN has been designed to operate using

heuristics whose effects can be anticipated by the user. The approach taken is an extension of the heuristic

method proposed by Mo and Witten (1992). Their heuristic approach improved on that of Nix by defining

typed character classes as components of the inferred strings. They suggested that users would normally

have some class of characters in mind when selecting examples, and that the function of the inference

heuristics should be to identify the class that the user intended.

The heuristic algorithm currently implemented in SWYN incrementally modifies the regular expression in

response to new examples chosen by the user. A graph reduction algorithm identifies common elements of

the examples, and produces minimal regular expressions composed of common character classes. This
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process is illustrated in figure 5, which shows the effects of choosing the first two strings in the figures of

the previous section.

w i b b l e

w i b b n e

w i b b
l

n
e

w i b b elowercase a-z

a)

b)

c)

Figure 5 – Regular expressions induction by heuristic graph reduction: a) addition of

new exemplar as an alternative, b) reduction of common elements in alternative

branches, c) replacement of single-letter alternatives with a character class.

When a new positive example is chosen, it is added to the graph as a complete alternative expression.

Alternatives are branches in the regular expression graph, as shown in figure 5a). This graph is then

reduced by merging common elements at the beginning or end of alternative branches. The result of this

merging process is shown in figure 5b). Where the graph reduction produces alternatives that are single

characters, these are merged into the smallest general character class, as shown in figure 5c). The

character class can later be refined by choosing negative examples, or by directly manipulating the regular

expression itself, as described later in the chapter.
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a)

b)

c)

w i b b l e

w i b b l eb b b b b

w i b b l e

b b b b b

w i b el

w i b b l e

b

d) b

Figure 6 – heuristics for inferring repeated sections of regular expression

Repeated elements in the regular expression are also inferred using graph reduction heuristics. Figure 6

shows the effect of adding an example that can be explained as a repeated character in the regular

expression. Where an alternative branch consists solely of repeated elements (either a repeated single

character, or repeated subexpressions), these are identified as a repeated component of the regular

expression, as in figure 6c). Repeated branches are then merged with any occurrences of the repeat before

or after the branch, as in figure 6d).

Probabilistic algorithm

The heuristic algorithm described above is both deterministic and predictable, but may not always result

in optimal regular expressions. In the context of SWYN, this is completely intentional. It is better that the

user should be able to imagine the result of choosing new examples than that the results be optimal. Just

as Mo and Witten made some assumption about the classes of characters that would most likely be

intended by the user, this heuristic graph reduction approach makes some assumptions about the types of

regular expression structure that are most likely intended by the user. This usability feature does result in

some loss of generality, but it is always possible for the user to optimise the expression by direct

manipulation, as described later in the chapter.

However an alternative is to use a probabilistic algorithm, in which the examples chosen have more

influence on the intended expression. Current work on SWYN is replacing the simple graph heuristics

described above with a probabilistic model based on stochastic context-free grammars, where alternative

grammars can be assigned probabilities on the basis of the examples that the user has chosen. A great

advantage of this new approach is that text not yet chosen by the user can also be assigned probabilities

according to different interpretations of the grammar. A string which may be matched by one possible
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interpretation but not by another can then be classed as ambiguous and brought to the user’s attention as a

priority for his or her next decision.

A VISUAL NOTATION FOR REGULAR EXPRESSIONS

The previous sections have described the activity of creating a regular expression from examples, as

though the user might be able to see and modify not only the examples and resulting selection set, but the

expression itself. It would certainly be a good thing if that were possible, for reasons described earlier in

the chapter. In fact, the previous section did provide a kind of visual representation of the regular

expression for the benefit of you, the reader. The graphs drawn in the discussion of the graph reduction

algorithm are very useful in understanding how the algorithm works, and they included some ad hoc

syntactic elements that provide clues about how one might represent regular expressions visually – a loop

with an arrow represented repetition of a character, and a solid black circle represented the beginning and

end of alternate subexpressions.

It is difficult to develop usable new visual representations from purely theoretical considerations. The

design of visual representations is partly a craft skill, and partly a question of cognitive science, in which

experimental evidence can be used to assess alternatives. The SWYN project is based on cognitive

research into reasoning with diagrammatic representations (Blackwell et. al. in press), and has taken the

second approach to the design of visual notation.

This section reports an experiment that evaluated four potential representations of regular expressions:

conventional regular expressions, and three alternatives. Altogether, two of the four alternatives presented

the regular expressions in declarative form, while two suggested an explicit order of evaluation.

Furthermore, two of the alternative notations used only conventional characters from the ASCII character

set, while two used graphical conventions in a way that might be described as a “visual” regular

expression. The design of the experiment allowed the effects of these factors to be compared.

Experiment: Evaluation of alternative representations

The four notations used in this experiment expressed equivalent information in very different forms. The

first of these was that of conventional regular expressions, although a slightly constrained subset was used.

One example is that the “+” command was used rather than the “*” command, because the latter often

mystifies novices when it matches null strings. Figure 7 shows a typical example of a regular expression

that was used in the experiment: this example matches a range of English telephone numbers: 01223

613234, 0044 1223 356319, 0044 1223 354319 etc. Note that it also matches some strings that are not

valid English phone numbers, such as 0044 1223 303. This is intentional – it is typical of the problems

encountered by novices when using regular expressions, and the experiment specifically tested whether

users were able to recognise valid matches even when they were inconsistent with environmental

knowledge.

 (0|0044 )1223 [356][0-9]+

Figure 7. Regular expression defining a set of phone numbers
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The second alternative notation is still textual, but it defines a strict order of evaluation that can be

followed by the user. It also replaces the cryptic control characters of the regular expression with English

instructions. An example, logically identical to Figure 7, is given in Figure 8.

Find one of the following:
a) either the sequence "0"
b) or the sequence "0044 "

followed by the sequence "1223 "
followed by any one of these
characters: "3" or "5" or "6"
followed by at least one, possibly more,
of the following:

- any one of these characters: any
one from "0" to "9"

Figure 8. Procedural expression defining the same set as Figure 7.

The third alternative notation is declarative, as in conventional regular expressions, but it uses graphical

cues in place of control characters. These cues are easily distinguished from the characters in the search

expression, both visually and semantically. Some of the cues, spatial enclosure for example, are so

familiar that an explanation seems redundant. Nevertheless, participants in the experiment were provided

with a legend defining the meaning of each graphical element. An example of this notation is shown in

figure 9a, and the explanatory legend in figure 9b.

0044 
0

1223 0-953
6

Figure 9a. Visual declarative expression defining the same set as Figure 7.

a

bb
aa

a

a
k-n
b

means either the sequence aa, or the sequence bb can go here

boxes group sequences together

means any character can go here

means that one of the characters a, b or k..n (k,l,m,n) can go here

means that "a" must occur at least once but possibly more times

Figure 9b. Legend defining notation C.

The final alternative notation is both graphical and procedural. It might be regarded as a state transition

diagram, typical of those used in computer science classes where regular expressions are taught in terms

of finite state automata, or for teaching language grammars. Participants in this experiment, however,
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treated the notation as an imperative flow-chart. An example of the procedural graphical notation is shown

in figure 10a, and the explanatory legend in figure 10b.

0 0044  

1223  

any one of {0-9}

any one of {3,5,6}

Figure 10a. Visual procedural expression defining the same set as Figure 7.

abcde

any one of {a,b,k-n}

any character

abc

means either the sequence aa, or the sequence bb can go here

boxes group sequences together

means any character can go here

means that one of the characters a, b or k..n (k,l,m,n) can go here

means that "abc" must occur at least once but possibly more times

aa bb

Figure 10b. Legend defining notation D.

Method

The participants in the evaluation experiment were 39 postgraduate students from Oxford and Cambridge

universities, studying a wide range of arts and science disciplines. None were previously familiar with

regular expressions, but this population clearly has a high level of intelligence and might be expected to

learn principles of programming more quickly than average.

Each participant was given an instruction booklet. The first two pages described the experiment and

presented the four different notations. This introduction did not refer to programming, which has been

found to intimidate participants in previous experiments on programming notations. Instead it described

the expressions as being experimental formats for use in Internet search.
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The following twelve pages in the experiment booklet presented twelve different tasks, all chosen to

represent typical regular expressions that might be constructed to represent user abstractions. The tasks

included identification of post codes, telephone numbers, market prices, food ingredients, car licence

numbers, examination marks, e-mail addresses and web pages. Each page presented a single regular

expression in one of the four formats, and five candidate text strings which might or might not match the

expression. The participant was asked to mark each of the five candidates with a tick or a cross to show

whether or not it would be matched by this regular expression. Participants also used a stopwatch to

record the amount of time that they spent working on each page.

The twelve tasks were divided into six pairs. Within each pair the structures of the two expressions were

made as similar as possible, then disguised by using examples from different fields (post codes versus car

registrations, for example). A different notation format was used for each half of the pair. The six pairs of

tasks thus allowed direct comparison of all combinations of the four regular expression notations: format

A with format B in one pair, A-C in another, A-D, B-C, B-D and C-D. For each participant in the

experiment it was therefore possible to compare their performance on similar tasks using each pair of

alternative notations. Performance comparisons were made according to two measures: the completion

time for each page, and the accuracy of responses for that page.

The assignment of notational formats to pairs and to individual tasks was varied across all participants, as

was the presentation order for the different formats. Each participant carried out three tasks using each of

the four notations, but every participant had a different assignment of notations to tasks.

Results

The notational format used to carry out the tasks had a highly significant effect on performance, F(38,1) =

26.8, p < .001. As shown in table 1, all the alternative notations were completed more quickly on average

than conventional regular expressions. Furthermore, the two graphical formats resulted in fewer errors.

Time (s) N errors

Conventional regular expression 117.6 60

Procedural text 106.7 48

Declarative graphic 86.1 48

Procedural graphic 86.2 38

Table 1. Overall performance results

More detailed analysis shows that the use of a graphical format has a significant effect on completion

time: the average completion time for all graphical notations was 86.1 s versus 112.1 s for the two textual

notations, F(38,1) = 26.0, p < .001. In contrast, the mean difference between the two declarative (101.8 s)

and the two procedural (96.4 s) notations was non-significant.

An investigation of the individual pairings across all participants confirmed that there were statistically

significant improvements in performance firstly when using the procedural graphical format rather than
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the procedural text format and secondly when using the declarative graphic format rather than

conventional regular expressions, t(39) = 2.57, p < .02 and t(39) = 5.18, p < .001 respectively.

With notational conventions such as these, it is reasonable to ask whether more verbose notations like the

procedural text might be appropriate for novices because they are easier at first sight, even though their

diffuseness might make them inconvenient after more practice (Green &  Petre 1996). In fact, the terse

notations of languages such as C or Perl are justified by the complementary argument – that the verbose

prompts needed by novices are not appropriate for expert users. A further analysis therefore compared

performance on the first task encountered by each participant, and on the last six tasks, in order to test

whether any notation provides disproportionate early advantages while being slower with practice. The

results in table 2 show that procedural text suffers an even greater disadvantage in speed when it is

encountered first, and is still not as accurate as the graphical alternatives. Furthermore, a comparison of

performance speed relative to the experimental presentation order found that the most highly correlated

improvement in performance over the course of the experiment was for the procedural graphic notation, r

= 0.41, p < .001. This format was thus the most accurate initially, almost the fastest initially, and still

provided the greatest improvement in performance with further practice. The declarative graphical format,

on the other hand, appears to have been more error prone toward the end of the experiment.

Mean time

first task (s)

% wrong in

first task

Mean time

last six tasks

% wrong in

last six tasks

Conventional regular expression 198 64 % 104 47 %

Procedural text 207 44 % 82 37 %

Declarative graphic 110 25 % 77 47 %

Procedural graphic 123 9 % 71 27 %

Table 2. Performance for first and later tasks

Discussion

It is clear that graphical notations provide a large improvement in usability over conventional regular

expressions for typical comprehension tasks. Clearer text formats which use typographic devices such as

indenting, and have interpretative information included in the notation may perform slightly better overall.

But this slight advantage does not reduce the number of errors, and there is no clear advantage for first

time users.

In fact, the format that is the least error-prone overall also provides the greatest improvements in usability

with practice. It has the disadvantage common to many graphical notations, that it requires far more

screen space than conventional regular expressions. For this reason, the declarative graphical format may

be more effective in practical programming applications. It still provides large improvements in usability

over the conventional notation, and is sufficiently compact that it can be used in situ, in place of

conventional regular expressions. The last part of this chapter describes a prototype text editor using this

notation.
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AN INTEGRATED FACILITY FOR REGULAR EXPRESSION CREATION

This section describes an approach toward integrating all of these elements in a text processing

environment such as a word processor. It applies the declarative graphical format that was evaluated in the

experiment above, and integrates this into the user’s environment so that regular expressions can easily be

created from examples. The graphical representation of the regular expression is displayed continuously,

and is updated in response to each selection of a positive or negative example. The regular expression is

overlaid on the text window, so that the direct correspondence between the regular expression and the

most recently selected string can be indicated via superimposed graphical links. The simple syntax of the

representation means that it can be made partially transparent, so that it is completely integrated into the

task context.

Visual integration with data

This integration is further enhanced by a simple correspondence between the colour of selected example

strings in the task domain and colouring of the elements of the visual representation. Required parts of the

regular expression are coloured green, and parts that must not occur (such as excluded character sets) are

coloured red. This creates a visual link to the green and red colours that are used to highlight positive and

negative examples in the text, and also to the green outline displayed around all members of the current

selection set.

The resulting visual appearance for SWYN is shown in figure 11. The structure of the displayed regular

expression is indicated by simple blocks of colour, and alternate subexpressions are linked by a containing

coloured region. Only two special syntactic elements are used: a wildcard character to represent potential

character sets, and a style of decorative border to indicate repetition. Both use existing conventions – the

wildcard element is represented by a question mark and the repetition border uses the conventional visual

cue of a “stack” of cards.

Figure 11. User interface for specification and display of regular expressions

(monochrome reproduction may have obscured the red and green annotations – the

word ‘wobble’ on the second row from the top is annotated in red, and the box around

the letter ‘o’ in the centre of the screen is red)

The regular expression is also directly related to the user’s most recent action by drawing correspondence

lines between the letters of the most recently selected example string and the elements of the visual
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representation. This allows the user to see immediately what effect each new example has had on the

inferred result.

Modification of the regular expression

In addition to refining the regular expression by selecting further positive and negative examples, the

SWYN visual expression supports two more specialised ways to modify the regular expression. The first

of these is by direct manipulation of the visual expression itself. The most important direct manipulation

facility supported by the currently implemented algorithms is the ability to select elements of the regular

expression and redefine them. As described above, the induction algorithm assumes very general character

sets when reducing the expression graph. However the actual characters that were used to infer the graph

are recorded as annotations to the graph nodes. If the user wishes to review any character set, he or she

can click on that element in the expression in order to see a list of possible interpretations that could be

drawn from the original examples. This list could be presented as a pop-up menu, as shown in figure 12,

so the user can select the desired interpretation. Any direct modification of the regular expression will, of

course, result in an immediate update of the current selection set within the main text display.

Figure 12. Modifying the expression directly by selecting an intended character class

Once the probabilistic inference algorithm described earlier has been incorporated into SWYN, the system

will also support active learning by identifying boundary cases and marking them for the user’s attention.

The user will then be free to refine the current inferred expression by classifying the boundary case,

directly modifying the elements of the expression, or simply proceed on the basis of current selections.

The result should be both powerful and natural to use, and clearly shows the advantages of integrating

principles of visual design and direct manipulation into a PBE system. Future work on SWYN will

include an empirical investigation of the usability of the novel interaction techniques described here. This

will consider both the selection of positive and negative examples to construct a regular expression, and

the modification of that expression to refer to refine specific boundary conditions or intended character

classes .

CONCLUSIONS

The SWYN project aims to help users create powerful abstractions through programming by example.

Rather than emphasising sophisticated inference algorithms, it has applied a relatively simple algorithm

for inference of regular expressions from examples, but combined it with thorough design for usability.

This has taken into account both Green’s cognitive dimensions of notations framework, and also the

application of direct manipulation principles to the domain of abstraction creation.
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The consequences for the system design have been that the results of the inference are made visible to the

user – both the inferred abstraction, and the effects of the abstraction within the task domain. The

inference results are displayed using a novel visual formalism that is both motivated by sound theoretical

principles and verified in experimental evaluation.

This visualisation, the approach to identifying examples in the user interface, and the heuristic algorithms

used for inference mean that all user actions have incremental effects whose results are immediately

visible. Users can both predict and observe the results of their actions, and either refine their abstractions

or correct them accordingly.

The result is a tool that, although it has a rather specialised purpose, exemplifies many important future

emphases for the development of PBE systems.
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