
Formal Grammars and Languages

Tao Jiang

Department of Computer Science

McMaster University

Hamilton, Ontario L8S 4K1, Canada

Ming Li

Department of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

Bala Ravikumar

Department of Computer Science

University of Rhode Island

Kingston, RI 02881, USA

Kenneth W. Regan

Department of Computer Science

State University of New York at Buffalo

Buffalo, NY 14260, USA

1 Introduction

Formal language theory as a discipline is generally regarded as growing from the work of linguist

Noam Chomsky in the 1950s, when he attempted to give a precise characterization of the structure

of natural languages. His goal was to define the syntax of languages using simple and precise mathe-

matical rules. Later it was found that the syntax of programming languages can be described using

one of Chomsky’s grammatical models called context-free grammars. Much earlier, the Norwegian

mathematician Axel Thue studied sequences of binary symbols subject to interesting mathematical

properties, such as not having the same substring three times in a row. His work influenced Emil

Post, Stephen Kleene, and others to study the mathematical properties of strings and collections

of strings.

Soon after the advent of modern electronic computers, people realized that all forms of

information—whether numbers, names, pictures, or sound waves—can be represented as strings.

Then collections of strings known as languages became central to computer science. This sec-

tion is concerned with fundamental mathematical properties of languages and language generating

systems, such as grammars. Every programming language from Fortran to Java can be precisely

1

described by a grammar. Moreover, the grammar allows us to write a computer program (called the

syntax analyzer in a compiler) to determine whether a string of statements is syntactically correct in

the programming language. Many people would wish that natural languages such as English could

be analyzed as precisely, that we could write computer programs to tell which English sentences

are grammatically correct. Despite recent advances in natural language processing , many of which

have been spurred by formal grammars and other theoretical tools, today’s commercial products

for grammar and style fall well short of that ideal. The main problem is that there is no common

agreement on what are grammatically correct (English) sentences; nor has anyone yet been able to

offer a grammar precise enough to propose as definitive. And style is a matter of taste! such as not

beginning sentences with “and” or using interior exclamations. Formal languages and grammars

have many applications in other fields, including molecular biology (see [Searls, 1993]) and symbolic

dynamics (see [Lind and Marcus, 1995]).

In this chapter, we will present some formal systems that define families of formal languages

arising in many computer science applications. Our primary focus will be on context-free languages,

since they are most widely used to describe the syntax of programming languages. In the rest of

this section, we present some basic definitions and terminology.

Definition 1.1 An alphabet is a finite nonempty set of symbols. Symbols are assumed to be

indivisible.

For example, an alphabet for English can consist of as few as the 26 lower-case letters a, b, . . . , z,

adding some punctuation symbols if sentences rather than single words will be considered. Or it may

include all of the symbols on a standard North American typewriter, which together with terminal

control codes yields the 128-symbol ASCII alphabet, in which much of the world’s communication

takes place. The new world standard is an alphabet called UNICODE , which is intended to

provide symbols for all the world’s languages—as of this writing, over 38,000 symbols have been

assigned. But most important aspects of formal languages can be modeled using the simple two-

letter alphabet {0, 1}, over which ASCII and UNICODE are encoded to begin with. We usually

use the symbol Σ to denote an alphabet.

Definition 1.2 A string over an alphabet Σ is a finite sequence of symbols of Σ.

2

The number of symbols in a string x is called its length, denoted by |x|. It is convenient to

introduce a notation ε for the empty string, which contains no symbols at all. The length of ε is 0.

Definition 1.3 Let x = a1a2 · · · an and y = b1b2 · · · bm be two strings. The concatenation of x

and y, denoted by xy, is the string a1a2 · · · anb1b2 · · · bm.

Then for any string x, εx = xε = x. For any string x and integer n ≥ 0, we use xn to denote

the string formed by sequentially concatenating n copies of x.

Definition 1.4 The set of all strings over an alphabet Σ is denoted by Σ∗, and the set of all

nonempty strings over Σ is denoted by Σ+. The empty set of strings is denoted by ∅.

Definition 1.5 For any alphabet Σ, a language over Σ is a set of strings over Σ. The members

of a language are also called the words of the language.

Example 1.1 The sets L1 = {01, 11, 0110} and L2 = {0n1n|n ≥ 0} are two languages over the

binary alphabet {0, 1}. L1 has three words, while L2 is infinite. The string 01 is in both languages

while 11 is in L1 but not in L2.

Since languages are just sets, standard set operations such as union, intersection, and com-

plementation apply to languages. It is useful to introduce two more operations for languages:

concatenation and Kleene closure.

Definition 1.6 Let L1 and L2 be two languages over Σ. The concatenation of L1 and L2, denoted

by L1L2, is the language {xy|x ∈ L1, y ∈ L2}.

Definition 1.7 Let L be a language over Σ. Define L0 = {ε} and Li = LLi−1 for i ≥ 1. The

Kleene closure of L, denoted by L∗, is the language

L∗ =
⋃

i≥0

Li.

The positive closure of L, denoted by L+, is the language

L+ =
⋃

i≥1

Li.

3

In other words, the Kleene closure of a language L consists of all strings that can be

formed by concatenating zero or more words from L. For example, if L = {0, 01}, then

LL = {00, 001, 010, 0101}, and L∗ comprises all binary strings in which every 1 is preceded by

a 0. Note that concatenating zero words always gives the empty string, and that a string with no

1s in it still makes the condition on “every 1” true. L+ has the meaning “concatenate one or more

words from L,” and satisfies the properties L∗ = L+ ∪ {ε} and L+ = LL∗. Furthermore, for any

language L, L∗ always contains ε, and L+ contains ε if and only if L does. Also note that Σ∗ is in

fact the Kleene closure of the alphabet Σ when Σ is viewed as a language of words of length 1, and

Σ+ is just the positive closure of Σ.

2 Representation of Languages

In general a language over an alphabet Σ is a subset of Σ∗. How can we describe a language

rigorously so that we know whether a given string belongs to the language or not? As shown in

Eaxmple 1.1, a finite language such as L1 can be explicitly defined by enumerating its elements.

An infinite language such as L2 cannot be exhaustively enumerated, but in the case of L2 we were

able to give a simple rule characterizing all of its members. In English, the rule is, “some number

of 0s followed by an equal number of 1s.” Can we find systematic methods for defining rules that

characterize a wide class of languages? In the following we will introduce three such methods:

regular expressions, pattern systems, and grammars. Interestingly, only the last is capable

of specifying the simple rule for L2, although the first two work for many intricate languages. The

term formal languages refers to languages that can be described by a body of systematic rules.

2.1 Regular Expressions and Languages

Let Σ be an alphabet.

Definition 2.1 The regular expressions over Σ and the languages they represent are defined

inductively as follows.

1. The symbol ∅ is a regular expression, and represents the empty language.

4

2. The symbol ε is a regular expression, and represents the language whose only member is the

empty string, namely {ε}.

3. For each c ∈ Σ, c is a regular expression, and represents the language {c}, whose only member

is the string consisting of the single character c.

4. If r and s are regular expressions representing the languages R and S, then (r+ s), (rs) and

(r∗) are regular expressions that represent the languages R ∪ S, RS, and R∗, respectively.

For example, ((0(0 + 1)∗) + ((0 + 1)∗0)) is a regular expression over {0, 1} that represents the

language consisting of all binary strings that begin or end with a 0. Since the set operations

union and concatenation are both associative, and since we can stipulate that Kleene closure takes

precedence over concatenation and concatenation over union, many parentheses can be omitted from

regular expressions. For example, the above regular expression can be written as 0(0+1)∗+(0+1)∗0.

We will also abbreviate the expression rr∗ as r+. Let us look at a few more examples of regular

expressions and the languages they represent.

Example 2.1 The expression 0(0 + 1)∗1 represents the set of all strings that begin with a 0 and

end with a 1.

Example 2.2 The expression 0 + 1 + 0(0 + 1)∗0 + 1(0 + 1)∗1 represents the set of all nonempty

binary strings that begin and end with the same bit. Note the inclusion of the strings 0 and 1 as

special cases.

Example 2.3 The expressions 0∗, 0∗10∗, and 0∗10∗10∗ represent the languages consisting of strings

that contain no 1, exactly one 1, and exactly two 1’s, respectively.

Example 2.4 The expressions (0+1)∗1(0+1)∗1(0+1)∗, (0+1)∗10∗1(0+1)∗, 0∗10∗1(0+1)∗, and

(0 + 1)∗10∗10∗ all represent the same set of strings that contain at least two 1’s.

Two or more regular expressions that represent the same language, as in Example 2.4, are called

equivalent . It is possible to introduce algebraic identities for regular expressions in order to construct

equivalent expressions. Two such identities are r(s + t) = rs + rt, which says that concatenation

5

distributes over union the same way “times” distributes over “plus” in ordinary algebra (but taking

care that concatenation isn’t commutative), and r∗ = (r∗)∗. These two identities are easy to prove;

the reader seeking more detail may consult [Salomaa, 1966].

Example 2.5 Let us construct a regular expression for the set of all strings that contain no con-

secutive 0s. A string in this set may begin and end with a sequence of 1s. Since there are no

consecutive 0s, every 0 that is not the last symbol of the string must be followed by a 1. This gives

us the expression 1∗(01+)∗1∗(ε+0). It is not hard to see that the second 1∗ is redundant and thus

the expression can in fact be simplified to 1∗(01+)∗(ε+ 0).

Regular expressions were first introduced by [Kleene, 1956] for studying the properties of neural

nets. The above examples illustrate that regular expressions often give very clear and concise

representations of languages. The languages represented by regular expressions are called the

regular languages. Fortunately or unfortunately, not every language is regular. For example, there

are no regular expressions that represent the languages {0n1n|n ≥ 1} or {xx | x ∈ {0, 1}∗}; the

latter case is proved at the end of Section 2.1 in Chapter 30.

2.2 Pattern Languages

Another way of representing languages is to use pattern systems [Angluin, 1980] (see also

[Jiang et al., 1995]).

Definition 2.2 A pattern system is a triple (Σ, V, p), where Σ is the alphabet, V is the set of

variables with Σ ∩ V = ∅, and p is a string over Σ ∪ V called the pattern.

Definition 2.3 The language generated by a pattern system (Σ, V, p) consists of all strings over

Σ that can be obtained from p by replacing each variable in p with a string over Σ.

An example pattern system is ({0, 1}, {v1, v2}, v1v10v2). The language it generates contains all

words that begin with a 0 (since v1 can be chosen as the empty string, and v2 as an arbitrary string),

and contains some words that begin with a 1, such as 110 (by taking v1 = 1, v2 = ε) and 101001

(by taking v1 = 10, v2 = 1). However, it does not contain the strings ε, 1, 10, 11, 100, 101, etc. The

pattern system ({0, 1}, {v1}, v1v1) generates the set of all strings that are the concatenation of two

6

equal substrings, namely the set {xx|x ∈ {0, 1}∗}. The languages generated by pattern systems are

called pattern languages.

Regular languages and pattern languages are really different. We have noted that the pattern

language {xx|x ∈ {0, 1}∗} is not a regular language, and one can prove that the set represented by

the regular expression 0∗1∗ is not a pattern language. Although it is easy to write an algorithm

to decide whether a given string is in the language generated by a given pattern system, such an

algorithm would most likely have to be very inefficient [Angluin, 1980].

2.3 General Grammars

Perhaps the most useful and general system for representing languages is based on the formal notion

of a grammar .

Definition 2.4 A grammar is a quadruple (Σ, V, S, P), where:

1. Σ is a finite nonempty set called the terminal alphabet. The elements of Σ are called the

terminals.

2. V is a finite nonempty set disjoint from Σ. The elements of V are called the nonterminals

or variables.

3. S ∈ V is a distinguished nonterminal called the start symbol.

4. P is a finite set of productions (or rules) of the form

α→ β

where α ∈ (Σ∪V)∗V (Σ∪V)∗ and β ∈ (Σ∪V)∗, i.e. α is a string of terminals and nonterminals

containing at least one nonterminal and β is a string of terminals and nonterminals.

Example 2.6 Let G1 = ({0, 1}, {S, T,O, I}, S, P), where P contains the following productions

S → OT

S → OI

T → SI

7

O → 0

I → 1

As we shall see, the grammar G1 can be used to describe the set {0n1n|n ≥ 1}.

Example 2.7 Let G2 = ({0, 1, 2}, {S,A}, S, P), where P contains the following productions

S → 0SA2

S → ε

2A → A2

0A → 01

1A → 11

This grammar G2 can be used to describe the set {0n1n2n ≥ n ≥ 0}.

Example 2.8 To construct a grammar G3 to describe English sentences, one might let the alphabet

Σ comprise all English words rather than letters. V would contain nonterminals that correspond to

the structural components in an English sentence, such as <sentence>, <subject>, <predicate>,

<noun>, <verb>, <article>, and so on. The start symbol would be <sentence>. Some typical

productions are:

<sentence> → <subject><predicate>

<subject> → <noun>

<predicate> → <verb><article><noun>

<noun> → mary

<noun> → algorithm

<verb> → wrote

<article> → an

The rule <sentence> → <subject><predicate> models the fact that a sentence can consist of

a subject phrase and a predicate phrase. The rules <noun> → mary and <noun> → algorithm

mean that both “mary” and “algorithm” are possible nouns. This approach to grammar, stemming

from Chomsky’s work, has influenced even elementary-school teaching.

8

To explain how a grammar represents a language, we need the following concepts.

Definition 2.5 Let (Σ, V, S, P) be a grammar. A sentential form of G is any string of terminals

and nonterminals, i.e. a string over Σ ∪ V .

Definition 2.6 Let (Σ, V, S, P) be a grammar, and let γ1, γ2 be two sentential forms of G. We say

that γ1 directly derives γ2, written γ1 ⇒ γ2, if γ1 = σατ , γ2 = σβτ , and α→ β is a production

in P .

For example, the sentential form 00S11 directly derives the sentential form 00OT11 in grammar

G1, and A2A2 directly derives AA22 in grammar G2.

Definition 2.7 Let γ1 and γ2 be two sentential forms of a grammar G. We say that γ1 derives

γ2, written γ1 ⇒
∗ γ2, if there exists a sequence of (zero or more) sentential forms σ1, . . . , σn such

that

γ1 ⇒ σ1 ⇒ · · · ⇒ σn ⇒ γ2.

The sequence γ1 ⇒ σ1 ⇒ · · · ⇒ σn ⇒ γ2 is called a derivation of γ2 from γ1.

For example, in grammar G1, S ⇒
∗ 0011 because

S ⇒ OT ⇒ 0T ⇒ 0SI ⇒ 0S1⇒ 0OI1⇒ 00I1⇒ 0011

and in grammar G2, S ⇒
∗ 001122 because

S ⇒ 0SA2⇒ 00SA2A2⇒ 00A2A2⇒ 0012A2⇒ 0011A22⇒ 001122.

Here the left-hand side of the relevant production in each derivation step is underlined for clarity.

Definition 2.8 Let (Σ, V, S, P) be a grammar. The language generated by G, denoted by L(G),

is defined as

L(G) = {x|x ∈ Σ∗, S ⇒∗ x}.

The words in L(G) are also called the sentences of L(G).

9

Clearly, L(G1) contains all strings of the form 0n1n, n ≥ 1, and L(G2) contains all strings of

the form 0n1n2n, n ≥ 0. Although only a partial definition of G3 is given, we know that L(G3)

contains sentences like “mary wrote an algorithm” and “algorithm wrote an algorithm,” but does

not contain strings like “an wrote algorithm.”

Formal grammars were introduced as such by [Post, 1943], and had antecedents in work by

Thue and others. However, the study of their rigorous use in describing formal (and natural)

languages did not begin until the mid-1950s [Chomsky, 1956]. In the next section, we consider

various restrictions on the form of productions in a grammar, and see how these restrictions can

affect its power to represent languages. In particular, we will show that regular languages and

pattern languages can all be generated by grammars under different restrictions.

3 Hierarchy of Grammars

Grammars can be divided into four classes by gradually increasing the restrictions on the form of

the productions. Such a classification is due to Chomsky [Chomsky, 1956, Chomsky, 1963] and is

called the Chomsky hierarchy .

Definition 3.1 Let G = (Σ, V, S, P) be a grammar.

1. G is also called a Type-0 grammar or an unrestricted grammar.

2. G is a Type-1 or context-sensitive grammar if each production α → β in P satisfies

|α| ≤ |β|. By “special dispensation,” we also allow a Type-1 grammar to have the production

S → ε, provided S does not appear on the right-hand side of any production.

3. G is a Type-2 or context-free grammar if each production α → β in P satisfies |α| = 1;

i.e., α is a single nonterminal.

4. G is a Type-3 or right-linear or regular grammar if each production has one of the following

three forms:

A→ cB, A→ c, A→ ε,

where A,B are nonterminals (with B = A allowed) and c is a terminal.

10

The language generated by a Type-i grammar is called a Type-i language, i = 0, 1, 2, 3. A

Type-1 language is also called a context-sensitive language (CSL), and a Type-2 language is

also called a context-free language (CFL). The “special dispensation” allows a CSL to contain

ε, and thus allows one to say that every CFL is also a CSL. Many sources allow “right-linear”

grammars to have productions of the form A → xB, where x is any string of terminals, and/or

exclude one of the forms A → c, A → ε from their definition of “regular” grammar (perhaps

allowing S → ε in the latter case). Regardless of the choice of definitions, every Type-3 grammar

generates a regular language, and every regular language has a Type-3 grammar; we have proved

this using finite automata in Chapter 30. Stated in other words:

Theorem 3.1 The class of Type-3 languages and the class of regular languages are equal.

The grammars G1 and G3 given in the last section are context-free and the grammar G2 is

context-sensitive. Now we give some examples of unrestricted and right-linear grammars.

Example 3.1 Let G4 = ({0, 1}, {S,A,O, I, T}, S, P), where P contains

S → AT

A → 0AO A → 1AI

O0 → 0O O1 → 1O

I0 → 0I I1 → 1I

OT → 0T IT → 1T

A → ε T → ε

Then G4 generates the set {xx|x ∈ {0, 1}∗}. To understand how this grammar works, think of the

nonterminal O as saying, “I must ensure that the right half gets a terminal 0 in the same place as

the terminal 0 in the production A → 0AO that introduced me.” The nonterminal I eventually

forces the precise placement of a terminal 1 in the right-hand side in the same way. The nonterminal

T makes sure that O and I place their 0 and 1 on the right-hand side rather than prematurely.

Only after every O and I has moved right past any earlier-formed terminals 0 and 1 and been

eliminated “in the context of” T , and the production A→ ε is used to signal that no additional O

or I will be introduced, can the endmarker T be dispensed with via T → ε. For example, we can

11

derive the word 0101 from S as follows:

S ⇒ AT ⇒ 0AOT ⇒ 01AIOT ⇒ 01IOT ⇒ 01I0T ⇒ 010IT ⇒ 0101T ⇒ 0101.

Only the productions A→ ε and T → ε prevent this grammar from being Type-1. The interested

reader is challenged to write a Type-1 grammar for this language.

Example 3.2 We give a right-linear grammar G5 to generate the language represented by the

regular expression in Example 2.2, i.e., the set of all nonempty binary strings beginning and ending

with the same bit. Let G5 = ({0, 1}, {S,O, I}, S, P), where P contains

S → 0O S → 1I

S → 0 S → 1

O → 0O O → 1O

I → 0I I → 1I

O → 0 I → 1

Here O means to remember that the last bit must be a 0, and 1 similarly forces the last bit to be

a 1. Note again how the grammar treats the words 0 and 1 as special cases.

Every regular grammar is a context-free grammar, but not every context-free grammar is

context-sensitive. However, every context-free grammar G can be transformed into an equiva-

lent one in which every production has the form A → BC or A → c, where A, B, and C are

(possibly identical) variables, and c is a terminal. If the empty string is in L(G), then we can

arrange to include S → ε under the same “special dispensation” as for CSLs. This form is called

Chomsky normal form [Chomsky, 1963], where it was used to prove the case i = 1 of the next

theorem. The grammar G1 in the last section is an example of a context-free grammar in Chomsky

normal form.

Theorem 3.2 For each i = 0, 1, 2, the class of Type-i languages properly contains the class of

Type-(i+ 1) languages.

The containments are clear from the above remarks. For the proper containments, we have already

seen that {0n1n|n ≥ 0} is a Type-2 language that is not regular, and Chapter 32 will show that

12

the language of the Halting Problem is Type-0 but not Type-1. One can prove by a technique

called “pumping” that the Type-1 languages {0n1n2n|n ≥ 0} and {xx|x ∈ {0, 1}∗} are not Type-2.

See [Hopcroft and Ullman, 1979] for this, and for a presentation of the algorithm for converting a

context-free grammar into Chomsky normal form.

The four classes of languages in the Chomsky hierarchy have also been completely characterized

in terms of Turing machines (see Chapter 30) and natural restrictions on them. We mention this

here to make the point that these characterizations show that these classes capture fundamental

properties of computation, not just of formal languages. A linear bounded automaton is a possibly-

nondeterministic Turing machine that on any input x uses only the cells initially occupied by x,

except for one visit to the blank cell immediately to the right of x (which is the initially-scanned

cell if x = ε). Pushdown automata may also be nondeterministic and were likewise introduced in

Chapter 30.

Theorem 3.3

(a) The class of Type-0 languages equals the class of languages accepted by Turing machines.

(b) The class of Type-1 languages equals the class of languages accepted by linear bounded au-

tomata.

(c) The class of Type-2 languages equals the class of languages accepted by pushdown automata.

(d) The class of Type-3 languages equals the class of languages accepted by finite automata.

Proof. (a) Given a Type-0 grammar G, one can build a nondeterministic Turing machine

M that accepts L(G) by having M first write the start symbol S of G on a second tape. M always

nondeterministically chooses a production and chooses a place (if any) on its second tape where it

can be applied. If and when the second tape becomes an all-terminal string, M compares it to its

input, and if they match, M accepts. Then L(M) = L(G), and by Theorem 2.4 of Chapter 30, M

can be converted into an equivalent deterministic single-tape Turing machine.

For the reverse simulation of a TM by a grammar we give full details. Given any TM M0,

we may modify M0 into an equivalent TM M = (Q,Σ,Γ, δ, B, q0, qf) that has the following five

properties: (i) M never writes a blank; (ii) M when reading a blank always converts it to a non-

blank symbol on the current step; (iii) M begins with a transition from q0 that overwrites the first

13

input cell (remembering what it was) by a special symbol ∧ that is never altered; (iv) M never

re-enters state q0 or moves left of ∧; and (v) whenever M is about to accept, M moves left to the

∧, where it executes an instruction that moves right and enters a distinguished state qe. In state

qe it overwrites any non-blank character by a special new symbol # and moves right; when it hits

the blank after having #-ed out the rightmost non-blank symbol on its tape, M finally goes to qf

and accepts.

Given M with these properties, take V = {S,A, } ∪ (Q × Γ)∪ (Γ \ Σ). A single symbol in

Q × Γ is written using square brackets; e.g. [q, c] means that M is in state q scanning character

c. The grammar G has the following productions, which intuitively can simulate any accepting

computation by M in reverse:

(1) S → ∧S0; S0 → #S0 | [qe,#];

(2) [r, d]→ [q, c], for all instructions (q, c, d, r) ∈ δ with q, r ∈ Q and c, d ∈ Γ;

(3) c[r,B]→ [q, c]A, for all (q, c, R, r) ∈ δ;

(4) c[r, d]→ [q, c]d, for all (q, c, R, r) ∈ δ and d ∈ Γ, d 6= B;

(5) [r, d]c→ d[q, c], for all (q, c, L, r) ∈ δ and d ∈ Γ, d 6= B;

(6) [q0, c]→ c for all c ∈ Σ, and

(7) A→ ε.

For all x ∈ L(M), G can generate x by first using the productions in (1) to lay down a # for

every cell used during the computation, using the productions (2)–(5) to simulate the computation

in reverse, using (6) to restore the first bit of x (blank if x = ε) one step after having eliminated

the nonterminal ∧, and using (7) to erase each A marking an initially-blank cell that M used.

Conversely, the only way G can eliminate ∧ and reach an all-terminal string is by winding back an

accepting computation of M all the way to state q0 scanning the first cell. Hence L(G) = L(M).

(b) If the given TM M0 is a linear bounded automaton, then we can patch the last construction

to eliminate the productions in (3) and (7), yielding a context-sensitive grammar G. To do this, we

need to make M postpone its one allowed visit to the blank cell after the input until the last step of

14

an accepting computation. To do this, we make M nondeterministically guess which bit of its input

x is the last one, and overwrite it by an immutable right endmarker $ the same way it did with ∧

on the left. Then we arrange that from state qe, M will accept only if it sees a blank immediately

to the right of the $, meaning that its initial guess delimited exactly the true input x. (Technically

this needs another state q′e.) Now M never even scans a blank in the middle of an accepting

computation, and we can delete the productions in (3) as well as (7). Moreover, if M0 accepts

ε, we can add the production S → ε allowed by the “special dispensation” for context-sensitive

grammars above.

Going the other way, if the grammar G in the first paragraph of this proof is context-sensitive,

then the resulting TM M uses only O(n) space, and can be converted to an equivalent linear

bounded automaton by Theorem 3.1 of Chapter 30.

(c) Given a context-free grammar G, we may assume that G is in Chomsky normal form. We

can build a nondeterministic PDA M whose initial moves lay down a bottom-of-stack marker ∧ and

the start symbol S of G, and go to a “central” state q. For every production of the form A→ BC

in G, M has moves that pop the stack if A is uppermost and push C and then B, returning to

state q. For every production of the form A→ c, M can pop an uppermost A from its stack if the

currently-scanned input symbol is c; then it moves its input head right. If G has the production

S → ε as a special case, then M can pop the initial S. A computation path accepts if and only

if the stack gets down to ∧ precisely when M reaches the blank at the end of its input x. Then

accepting paths of M on an input x are in 1-1 correspondence with leftmost derivations (see below)

of x in G, so L(M) = L(G).

Going from a PDA M to an equivalent CFG G is much trickier, and is covered well in

[Hopcroft and Ullman, 1979].

(d) This has been proved in Chapter 30, Theorem 2.2.

Since {xx|x ∈ {0, 1}∗} is a pattern language, we know from discussions above that the class

of pattern languages is not contained in the class of context-free languages. It is contained in the

class of context-sensitive languages, however.

Theorem 3.4 Every pattern language is context-sensitive.

15

This was proved by showing that every pattern language is accepted by a linear bounded automaton

[Angluin, 1980], whereupon it is a corollary of Theorem 3.3(b).

Given a class of languages, we are often interested in the so called closure properties of the

class.

Definition 3.2 A class of languages is said to be closed under a particular operation (such as

union, intersection, complementation, concatenation, or Kleene closure) if eevery application of the

operation on language(s) of the class yields a language of the class.

Closure properties are often useful in constructing new languages from existing languages, and

for proving many theoretical properties of languages and grammars. The closure properties of the

four types of languages in the Chomsky hierarchy are summarized below. Proofs may be found

in [Harrison, 1978], [Hopcroft and Ullman, 1979], or [Gurari, 1989]; the closure of the CSLs under

complementation is the famous Immerman-Szelepcsényi Theorem, which is treated in Chapter 33,

Section 2.5.

Theorem 3.5

1. The class of Type-0 languages is closed under union, intersection, concatenation, and Kleene

closure, but not under complementation.

2. The class of context-free languages is closed under union, concatenation and Kleene closure,

but not under intersection or complementation.

3. The classes of context-sensitive and regular languages are closed under all of the five opera-

tions.

For example, let L1 = {0m1n2p|m = n}, L2 = {0m1n2p|n = p}, and L3 = {0m1n2p|m =

n or n = p}. Now L1 is the concatenation of the context-free languages {0n1n|n ≥ 0} and 2∗, so

L1 is context-free. Similarly L2 is context-free. Since L3 = L1 ∪ L2, L3 is context-free. However,

intersecting L1 with L2 gives the language {0m1n2p|m = n = p}, which is not context-free.

We will look at context-free grammars more closely in the next section and introduce the

concepts of parsing and ambiguity.

16

4 Context-free Grammars and Parsing

From a practical point of view, for each grammar G = (Σ, V, S, P) representing some language, the

following two problems are important:

1. Membership problem: Given a string over Σ, does it belong to L(G)?

2. Parsing problem: Given a string in L(G), how can it be derived from S?

The importance of the membership problem is quite obvious—given an English sentence or

computer program, we wish to know if it is grammatically correct or has the right format. Solving

the membership problem for context-free grammars is an integral step in the lexical analysis of

computer programs, namely the stage of decomposing each statement into tokens, prior to fully

parsing the program. For this reason, the membership problem is also often referred to as lexical

analysis (cf. [Drobot, 1989]). Parsing is important because a derivation usually brings out the

“meaning” of the string. For example, in the case of a Pascal program, a derivation of the program

in the Pascal grammar tells the compiler how the program should be executed. The following

theorem qualifies the decidability of the membership problem for the four classes of grammars in the

Chomsky hierarchy. Proofs of the first assertion can be found in [Chomsky, 1963, Harrison, 1978,

Hopcroft and Ullman, 1979], while the second assertion is treated below. Decidability and time

complexity were defined in Chapter 30.

Theorem 4.1 The membership problem for Type-0 grammars is undecidable in general, but it is

decidable given any context-sensitive grammar. For context-free grammars the problem is decidable

in polynomial time, and for regular grammars, linear time.

Since context-free grammars play a very important role in describing computer programming

languages, we discuss the membership and parsing problems for context-free grammars in more

detail in this and the next section. First, let us look at another example of a context-free grammar.

For convenience, let us abbreviate a set of productions

A→ α1, . . . , A→ αn

with the same left-hand side nonterminal as

A→ α1| . . . |αn.

17

Example 4.1 We construct a context-free grammar G6 for the set of all valid real-number literals

in Pascal. In general, a real constant in Pascal has one of the following forms:

m.n, meq, m.neq,

where m, q are signed or unsigned integers and n is an unsigned integer. Let Σ comprise the digits

0–9, the decimal point ‘.’, the + and − signs, and the e for scientific notation. Let the set V of

variables be {S,M,N,D} and let the set P of the productions be:

S → M.N |MeM |M.NeM

M → N |+N | −N

N → DN |D

D → 0|1|2|3|4|5|7|8|9

Then the grammar generates all valid Pascal real values (allowing redundant leading 0s). For

instance, the value 12.3e-4 can be derived via

S ⇒M.NeM ⇒ N.NeM ⇒ DN.NeM ⇒ 1N.NeM ⇒ 1D.NeM ⇒

12.NeM ⇒ 12.DeM ⇒ 12.3eM ⇒ 12.3e−N ⇒ 12.3e-D ⇒ 12.3e-4

Perhaps the most natural representation of derivations in a context-free grammar is a deriva-

tion tree or a parse tree. Every leaf of such a tree corresponds to a terminal (or to ε), and every

internal node corresponds to a nonterminal. If A is an internal node with children B1, . . . , Bn, or-

dered from left to right, then A→ B1 · · ·Bn must be a production. The concatenation of all leaves

from left to right yields the string being derived. For example, the derivation tree corresponding to

the above derivation of 12.3e-4 is given in Figure 1. Such a tree also makes possible the extraction

of the parts 12, 3 and -4, which are useful in the storage of the real value in a computer memory.

Definition 4.1 A context-free grammar G is ambiguous if there is a string x ∈ L(G) that has

two distinct derivation trees. Otherwise G is unambiguous.

Unambiguity is a very desirable property because it promises a unique interpretation of each

sentence in the language. It is not hard to see that the grammar G6 for Pascal real values and

18

M

N

N

S

. N e

D

D

2

1 D

3

4

D

N-

M

Figure 1: The derivation tree for 12.3e− 4.

the grammar G1 defined in Example 2.6 are both unambiguous. The following example shows an

ambiguous grammar.

Example 4.2 Consider a grammar G7 for all valid arithmetic expressions that are composed of

unsigned positive integers and symbols +, ∗, (,). For convenience, let us use the symbol n to denote

any unsigned positive integer—it is treated as a terminal. This grammar has the productions

S → T + S|S + T |T

T → F ∗ T |T ∗ F |F

F → n|(S)

Two possible different derivation trees for the expression 1+ 2 ∗ 3+ 4 are shown in Figure 2. Thus

G7 is ambiguous. The left tree means that the first addition should be done before the second

addition, while the right tree says the opposite.

Although in the above example different derivations/interpretations of any expression always

result in the same value because the operations addition and multiplication are associative, there are

situations where the difference in the derivation can affect the final outcome. Actually, the grammar

G7 can be made unambiguous by removing the redundant productions S → T +S and T → F ∗ T .

This corresponds to the convention that a sequence of consecutive additions or multiplications is

19

S

T

T F

F

*

FF

T

S +

S T+

S

T

F

S

T

F T T

F

S+

*

+

F

1

3

1

2

3 42

4

Figure 2: Different derivation trees for the expression 1 + 2 ∗ 3 + 4.

always evaluated from left to right. Deleting the two productions does not change the language of

strings generated by G7, but it does fix unique interpretations of those strings.

It is worth noting that there are context-free languages that cannot be generated by any unam-

biguous context-free grammar. Such languages are said to be inherently ambiguous. An example

taken from [Hopcroft and Ullman, 1979] (where this fact is proved) is

{0m1m2n3n|m,n > 0} ∪ {0m1n2n3m|m,n > 0}.

The reason is that every context-free grammar G must yield two parse trees for some strings of the

form x = 0n1n2n3n, where one tree intuitively expresses that x is a member of the first set of the

union, and the other tree expresses that x is in the second set.

We end this section by presenting an efficient algorithm for the membership problem for context-

free grammars, following the treatment in [Hopcroft and Ullman, 1979]. The algorithm is due to

Cocke, Younger, and Kasami, and is often called the CYK algorithm. Let G = (Σ, V, S, P) be a

context-free grammar in Chomsky normal form.

Example 4.3 If we use the algorithm in [Hopcroft and Ullman, 1979] to convert the grammar

G7 from Example 4.2 into Chomsky normal form, we are led to introduce new “alias variables”

A,B,C,D for the operators and parentheses, and “helper variables” S1, T1, T2, F1, F2 to break up

the productions in G7 with right-hand-sides of length > 2 into length-2 pieces. The resulting

20

grammar is:

S → T1S|ST2|F1T |TF2|CS1|n

T1 → TA

T2 → AT

T → F1T |TF2|CS1|n

F1 → FB

F2 → BF

F → n|CS1

S1 → SD

A → +

B → ∗

C → (

D →)

While this grammar is much less intuitive to read than G7, having it in Chomsky normal form

facilitates the description and operation of the CYK algorithm.

Now suppose that x = a1 · · · an is a string of n terminals that we want to test for membership

in L(G). The basic idea of the CYK algorithm is a form of dynamic programming . For each pair

i, j, where 1 ≤ i ≤ j ≤ n, define a set Xi,j ⊆ V by

Xi,j = {A|A⇒
∗ ai · · · aj}.

Then x ∈ L(G) if and only if S ∈ X1,n. The sets Xi,j can be computed inductively in ascending

order of j− i. It is easy to figure out Xi,i for each i since Xi,i = {A|A→ ai ∈ P}. Suppose that we

have computed all Xi,j where j − i < d for some d > 0. To compute a set Xi,j , where j − i = d, we

just have to find all the nonterminals A such that there exist some nonterminals B and C satisfying

A → BC ∈ P and for some k, i ≤ k < j, B ∈ Xi,k and C ∈ Xk+1,j . A rigorous description of the

algorithm in a Pascal-style pseudocode is given below.

Algorithm CYK(x = a1 · · · an)

21

Table 1: An example execution of the CYK algorithm.

0 0 0 1 1 1

j →

1 2 3 4 5 6

1 O S

2 O S T

i 3 O S T

↓ 4 I

5 I

6 I

1. for i← 1 to n do

2. Xi,i ← {A|A→ ai ∈ P} ;

3. for d← 1 to n− 1 do

4. for i← 1 to n− d do

5. Xi,i+d ← ∅ ;

6. for t← 0 to d− 1 do

7. Xi,i+d ← Xi,i+d ∪ {A|A→ BC ∈ P for some B ∈ Xi,i+t and C ∈ Xi+t+1,i+d} ;

Table 1 shows the sets Xi,j for the grammar G1 and the string x = 000111. In this run it

happens that every Xi,j is either empty or a singleton. The computation proceeds from the main

diagonal toward the upper-right corner.

We now analyze the asymptotic time complexity of the CYK algorithm . Step 2 is executed

n times. Step 5 is executed
∑n−1

d=1
n − d = (n − 1)(n − 1 + n − (n − 1))/2 = n(n − 1)/2 = O(n2)

times. Step 7 is repeated for
∑n−1

d=1
d(n − d) = O(n3) times. Therefore, the algorithm requires

asymptotically O(n3) time to decide the membership of a string length n in L(G), for any grammar

G in Chomsky normal form.

22

5 More Efficient Parsing for Context-free Grammars

The CYK algorithm presented in the last section can be easily extended to solve the parsing problem

for context-free grammars: In step 7, we also record a production A→ BC and the corresponding

value of t for any nonterminal A that gets added to Xi,i+d. Thus a derivation tree for x can be

constructed by starting from the nonterminal S in X1,n and repeatedly applying the productions

recorded for appropriate nonterminals in appropriate sets Xi,j . However, the cubic running time of

this algorithm is generally too high for parsing applications. In practice, with compilation modules

thousands of lines long, people seek grammars in other forms besides Chomsky’s that permit parsing

in linear or nearly-linear time.

Before we present some of these forms, we discuss parsing strategies in general. Parsing algo-

rithms fall into two basic types, called top-down parsers and bottom-up parsers. As indicated

by their names, a top-down parser builds derivation trees from the top (root) to the bottom (leaves),

while a bottom-up parser starts from the leaves and works up to the root. Although neither method

is good for handling all context-free grammars, each provides efficient parsing for many important

subclasses of the context-free grammars, including those used in most programming languages.

We will only consider unambiguous grammars. To simplify the description of the parsers, we

will assume that each string to be parsed ends with a special delimiter $ that does not appear

anywhere else in the string. This assumption makes the detection of the end of the string easy in

a left-to-right scan. The assumption does not put any serious restriction on the range of languages

that can be parsed—the $ is just like the end-of-file marker in a real input file. The following

definition will be useful.

Definition 5.1 A derivation from a sentential form to another is said to be leftmost (or right-

most) if at each step the leftmost (or rightmost, respectively) nonterminal is replaced.

For example, Example 4.3 gave a leftmost derivation of the word 12.3e-4 in the grammar G6.

For a given word x, leftmost derivations are in 1-1 correspondence with derivation trees, since we

can find the leftmost derivation specified by a derivation tree by tracing the tree down from the root

going from left to right. Rightmost derivations are likewise in 1-1 correspondence with derivation

trees. Hence in an unambiguous context-free grammar, every derivable string has a unique leftmost

23

derivation and a unique rightmost derivation. The parsing methods considered next find one or the

other.

5.1 Top-down Parsing

An important member of the top-down parsers is the LL parser (see [Aho, Sethi and Ullman, 1985,

Drobot, 1989]). Here, the first “L” means scanning the input from left to right, and the second

means leftmost derivation. In other words, for any input string x, the parser intends to find the

sequence of productions used in the leftmost derivation of x.

Let G = (Σ, V, S, P) be a context-free grammar. A parsing table T for G has rows indexed

by members of V and columns indexed by members of Σ and $. Each entry T [A, c] is either

blank or contains one or more productions of the form A → α. Here we will suppose that G

allows the construction of a parsing table T such that every non-blank entry T [A, c] contains only

one production. Then the LL parser for G is a device very similar to a pushdown automaton as

described in Chapter 30. The parser has an input buffer, a pushdown stack, a parsing table, and

an output stream. The input buffer contains the string to be parsed followed by the delimiter $.

The stack contains a sequence of terminals or nonterminals, with another delimiter # that marks

the bottom of the stack. Initially, the input pointer points to the first symbol of the input string,

and the stack contains the start nonterminal S on top of #. Figure 3 illustrates schematically the

components of the parser. As usual, the input pointer will only move to the right, while the stack

pointer is allowed to move up and down.

The parser is controlled by an algorithm that behaves as follows. At any instant of time, the

algorithm considers the symbol X on top of the stack and the current input symbol c pointed by

the input pointer, and makes one of the following moves.

1. If X is a nonterminal, the algorithm consults the entry T [X, a] of the parsing table T . If the

entry is blank, the parser halts and states that the input string x is not in the language L(G).

If not, the entry is a production of the form X → Y1 · · ·Yk. Then the algorithm replaces the

top stack symbol X with the string Y1 · · ·Yk (with Y1 on top), and outputs the production.

2. If X is a terminal, X is compared with c. If X = c, the algorithm pops X off the stack and

shifts the input pointer to the next input symbol. Otherwise, the algorithm halts and states

24

INPUT

STACK

a
1

a
2

an $

Xm

#

X

X2

1

OUTPUT

PARSING TABLE
M

LL Parsing

Algorithm

Figure 3: A schematic illustration of the LL parser.

that x /∈ L(G).

3. If X = #, then provided c = $, the algorithm halts and declares the successful completion of

parsing. Otherwise the algorithm halts and states that x /∈ L(G).

Intuitively, the parser reconstructs the derivation of a string x = a1 · · · an as follows. Suppose

that the leftmost derivation of x is

S = γ0 ⇒ γ1 ⇒ · · · ⇒ γi ⇒ γi+1 ⇒ · · · ⇒ γm = x,

where each γj is a sentential form. Suppose, moreover, that the derivation step γi ⇒ γi+1 is

the result of applying a production X → Y1 · · ·Yk. This means that γi = αXβ for some string

α of terminals and sentential form β. Since no subsequent derivation will change α, this string

must match a leading substring a1 · · · aj of x for some j. In other words, γi = a1 · · · ajXβ and

γi+1 = a1 · · · ajY1 · · ·Ykβ. Suppose that the parser has successfully reconstructed the derivation

steps up to γi. To complete the derivation, the parser must transform the tail end of γi into

aj+1 · · · an. Thus, it keeps the string Xβ on the stack and repeatedly replaces the top stack symbol

(i.e., replaces the leftmost nonterminal) until aj+1 appears on top. At this point, aj+1 is removed

from the stack, and the remainder of the stack must be transformed to match aj+2 · · · an. The

procedure is repeated until all the input symbols are matched.

25

Table 2: An LL parsing table for grammar G8.

NONTER- INPUT SYMBOL

MINAL n + ∗ () $

S S → TS′ S → TS′

S′ S′ → +S S′ → ε S′ → ε

T T → FT ′ T → FT ′

T ′ T ′ → ε T ′ → ∗T T ′ → ε T ′ → ε

F F → n F → (S)

The following example illustrates the parsing table for a simple context-free grammar, and how

the parser operates.

Example 5.1 Consider again the language of valid arithmetic expressions from Example 4.2, where

an ambiguous grammar G7 was given that could be made unambiguous by removing two produc-

tions. Let us remove the ambiguity in a different way. The new grammar is called G8 and has the

following productions

S → TS′

S′ → +S|ε

T → FT ′

T ′ → ∗T |ε

F → n|(S)

It is easy to see that grammar G8 is unambiguous. A parsing table for this grammar is shown in

Table 2. We will discuss how such a table can be constructed shortly.

To demonstrate how the parser operates, consider the input string (n + n) ∗ n. Table 3 shows

the content of the stack, the remaining input symbols, and the output after each step. If we trace

the actions of the parser carefully, we see that the sequence of productions it outputs constitutes

the leftmost derivation of (n + n) ∗ n.

26

Table 3: The steps in the LL parsing of (n + n) ∗ n.

STACK INPUT OUTPUT

S# (n + n) ∗ n$

TS′# (n + n) ∗ n$ S → TS ′

FT ′S′# (n + n) ∗ n$ T → FT ′

(S)T ′S′# (n + n) ∗ n$ F → (S)

S)T ′S′# n + n) ∗ n$

TS′)T ′S′# n + n) ∗ n$ S → TS ′

FT ′S′)T ′S′# n + n) ∗ n$ T → FT ′

nT ′S′)T ′S′# n + n) ∗ n$ F → n

T ′S′)T ′S′# +n) ∗ n$

S′)T ′S′# +n) ∗ n$ T ′ → ε

+S)T ′S′# +n) ∗ n$ S′ → +S

S)T ′S′# n) ∗ n$

TS′)T ′S′# n) ∗ n$ S → TS ′

FT ′S′)T ′S′# n) ∗ n$ T → FT ′

nT ′S′)T ′S′# n) ∗ n$ F → n

T ′S′)T ′S′#) ∗ n$

S′)T ′S′#) ∗ n$ T ′ → ε

)T ′S′#) ∗ n$ T ′ → ε

T ′S′# ∗n$

∗TS′# ∗n$ T ′ → ∗T

TS′# n$

FT ′S′# n$ T → FT ′

nT ′S′# n$ F → n

T ′S′# $ T ′ → ε

S′# $ S′ → ε

$

27

Now we turn to the question of how to construct an LL parser for a given grammar G =

(Σ, V, S, P). It suffices to show how to compute the entries T [A, c], where A ∈ V and c ∈ Σ∪{$}. We

first need to introduce two functions FIRST (α) and FOLLOW (A). The former maps a sentential

form to a terminal or ε, and the latter maps a nonterminal to a terminal or $.

Definition 5.2 For each sentential form α ∈ {Σ ∪ V }∗, and for each nonterminal A ∈ V ,

FIRST (α) = {c ∈ Σ | for some β ∈ {Σ ∪ V }∗, α⇒∗ cβ} ∪ {ε | α⇒∗ ε}

FOLLOW (A) = {c ∈ Σ | for some α, β ∈ {Σ ∪ V }∗, S ⇒∗ αAcβ}

∪ {$ | for some α ∈ {Σ ∪ V }∗, S ⇒∗ αA}.

Intuitively, for any sentential form α, FIRST (α) consists of all the terminals that appear as the

first symbol of some sentential form derivable from α. The empty string ε is included in FIRST (α)

as a special case if α derives ε. On the other hand, for any nonterminal A, FOLLOW (A) consists

of all the terminals that immediately follow an occurrence of A in some sentential form derivable

from the start symbol S. The end delimiter $ is included in FOLLOW (A) as a special case if A

appears at the end of some sentential form derivable from S.

Algorithms for computing the FIRST () and FOLLOW () functions are fairly straightforward

and can be found in [Aho, Sethi and Ullman, 1985, Drobot, 1989]. It turns out that to construct the

parsing table for a grammar G, we only need to know the values of FIRST (α) for those sentential

forms α appearing on the right-hand sides of the productions in G.

Example 5.2 The following illustrate the functions FIRST (α) and FOLLOW (A) for the grammar

G8 described in the above example. For the former, only those sentential forms appearing on the

right-hand sides of the productions in G8 are considered.

FIRST (TS′) = {(,n}

FIRST (+S) = {+}

FIRST (FT ′) = {(,n}

FIRST (∗T) = {∗}

28

FIRST ((S)) = {(}

FIRST (n) = {n}

FIRST (ε) = {ε}

FOLLOW (S) = {), $}

FOLLOW (S′) = {), $}

FOLLOW (T) = {+,), $}

FOLLOW (T ′) = {+,), $}

FOLLOW (F ′) = {∗,+,), $}

Given the functions FIRST (α) and FOLLOW (A) for a grammar G, we can easily construct the

LL parsing table T [A, c] for G. The basic idea is as follows. Suppose that A → α is a production

and c ∈ FIRST (α). Then, the parser will replace A with α when A is on top of the stack and c

is the current input symbol. The only complication occurs when α may derive ε. In this case, the

parser should still replace A with α if the current input symbol is a member of FOLLOW (A). The

detailed algorithm is given below.

Algorithm LL-Parsing-Table(G = (Σ, V, S, P))

1. Initialize each entry of the table to blank.

2. for each production A→ α in P do

3. for each terminal a ∈ FIRST (α) do

4. add A→ α to T [A, a] ;

5. if ε ∈ FIRST (α) then

6. for each terminal or delimiter a ∈ FOLLOW (A) do

7. add A→ α to T [A, a] ;

29

The above algorithm can be applied to any context-free grammar to produce a parsing table.

However, for some grammars the table may have entries containing multiple productions. Multiply-

defined entries in a parsing table, however, would present our parsing algorithm with an unwelcome

choice. It would be possible for it to make a wrong choice and incorrectly report a string as not

being derivable, and backtracking to the last choice to try another would blow up the running time

unacceptably.

Example 5.3 Recall that we could make the grammar G7 of Example 4.2 unambiguous by delet-

ing two unnecessary productions. The resulting grammar, which we call G9, has the following

productions:

S → S + T |T

T → T ∗ F |F

F → n|(S)

It is easy to see that both FIRST (S+T) and FIRST (T) contain the terminal n. Hence, the entry

T [S,n] of the parsing table is multiply defined, so this table is not well-conditioned for LL parsing.

A context-free grammar whose parsing table has no multiply-defined entries is called an LL(1)

grammar. Here, the “1” signifies the fact that the LL parser uses one input symbol of lookahead

to decide its next move. For example, G8 is an LL(1) grammar, while G9 is not. It is easy to show

that our LL parser runs in linear time for any LL(1) grammar.

What can we do for grammars that are not LL(1), such as G9? The first idea is to extend the

LL parser to use more input symbols of lookahead. In other words, we will allow the parser to see

the next several input symbols before it makes a decision. For one more symbol of lookahead, this

requires expanding the parsing table to have a column for every pair of symbols in Σ (plus $ as

a possible second symbol), but so doing may separate and/or eliminate multiply-defined entries in

the original parsing table. The FIRST () and FOLLOW () functions have to be modified to take

two (or more) lookahead symbols into consideration. For any constant k > 1, a grammar is said

to be an LL(k) grammar if its parsing table using k lookahead symbols has no multiply defined

entries. For example, the grammar G1 given in Example 2.6 is not LL(1), but it is LL(2).

30

Although LL(k) grammars form a larger class than LL(1) grammars, there are still gram-

mars that are not LL(k) for any constant k. The grammar G7 and G9 are examples. The texts

[Aho, Sethi and Ullman, 1985, Drobot, 1989] provide several techniques for dealing with non-LL(k)

grammars, such as grammar transformations and backtracking. When backtracking is used, the

parsing process is often called recursive-descent parsing , and can be very time consuming due to

the use of many recursive calls.

5.2 Bottom-up Parsing

The most popular bottom-up parsing technique is LR parsing. Here, the “L” again means scanning

the input from left to right, while the “R” means constructing the rightmost derivation. For any

input string x, the LR parser scans x from left to right and tries to find the reverse of the sequence

of productions used in the rightmost derivation of x. It turns out that in bottom-up parsing

rightmost derivations are easier to deal with than leftmost derivations. LR parsing is especially

attractive in practice for many reasons summarized in [Aho, Sethi and Ullman, 1985]: (i) it can

handle virtually all programming language constructs; (ii) it has very efficient implementations;

(iii) it is more powerful than LL parsing; and (iv) it detects syntactic errors quickly. The principal

drawback of the method is that constructing an LR parser is very involved. Fortunately, there exist

efficient algorithms that can automatically generate LR parsers from certain context-free grammars.

Because of space limitations, we describe only the operation of an LR parser here, and refer the

reader to [Aho, Sethi and Ullman, 1985] for the construction of such a parser.

Similar to an LL parser, an LR parser has an input buffer, a pushdown stack, a parsing table,

and an output stream, and is controlled by an algorithm that is the same for all LR parsers. The

input string is again assumed to have an end delimiter $. At any time during parsing, the stack

stores a string of the form qmXmqm−1 · · ·X1q0 (with q0 at bottom), where each Xi is a grammar

symbol (i.e., a terminal or nonterminal of the grammar involved) and qi is a state symbol. The

number of distinct states is finite, and each state symbol intends to summarize the information

contained in the stack below it. The combination of the state on top of the stack and the current

input symbol are used to index the parsing table and determine the move of the parser. It will be

seen that the state symbols subsume all information in the grammar symbols, and a real parser

omits the latter. However, we retain the grammar symbols X1, . . . , Xm to make our illustration

31

easier to follow, and for consistency with previous examples.

The parsing table consists of two parts: a parsing action function ACTION (q, c), which maps

a state and an input symbol to a move, and a function GOTO(q,X), which maps a state and a

grammar symbol to a state. For each state q and each input symbol c, the value of the function

ACTION (q, c) can be one of the following:

1. shift ,

2. reduce by A→ α, where A→ α is a production in the grammar,

3. accept , and

4. blank .

The algorithm controlling the LR parser operates as follows. Suppose that the state on top of

the stack is q and the current input symbol is c. It consults ACTION (q, c) and makes one of the

four types of moves as below.

1. If ACTION (q, c) = shift , the parser pushes the string GOTO(q, c)c on the stack and shifts

its input pointer to the next input symbol.

2. If ACTION (q, c) = reduce by A→ α, the parser applies the production A→ α as follows. Let

k = |α|, and let the current stack content be qmXmqm−1 · · ·X1q0. The parser first pops the

top 2k symbols qm, Xm, . . . , qm−k+1, Xm−k+1 off the stack. It then consults GOTO(qm−k, A)

and pushes the string GOTO(qm−k, A)A onto the stack, resulting in a stack with content

GOTO(qm−k, A)Aqm−kXm−k · · ·X1q0. The parser also outputs the production A→ α.

It is always guaranteed in the above that Xm−k+1 · · ·Xm = α.

3. If ACTION (q, a) = accept , the parser successfully terminates.

4. If ACTION (q, a) = blank , the parser terminates and declares that the input string is not a

member of the language.

Intuitively, the LR parser reconstructs the rightmost derivation of a string x = a1 · · · an as

follows. Suppose that the rightmost derivation of x is

S = γ0 ⇒ γ1 ⇒ · · · ⇒ γi ⇒ γi+1 ⇒ · · · ⇒ γm = x,

32

where each γj is a sentential form. Furthermore, suppose that the derivation step γi ⇒ γi+1 is the

result of applying a production A→ Y1 · · ·Yk. This means that γi = αAz for some sentential form

α = X1 · · ·Xt and string z of terminals, and γi+1 = αY1 · · ·Ykz = X1 · · ·XtY1 · · ·Ykz. Since no

subsequent derivation will change z, this string must match a trailing substring aj · · · an of x for

some j. In other words, γi = X1 · · ·XtAaj · · · an and γi+1 = X1 · · ·XtY1 · · ·Ykaj · · · an.

Suppose that the parser has successfully reconstructed the derivation steps in reverse from γm

back to γi+1. At this point, the stack must be holding a string of the form

qt+hYh · · · qt+1Y1qtXt · · · q1X1q0,

where h ≤ k and q0, q1, . . . qt+h are some states, and the input pointer is pointing at aj+h−k.

Moreover, it must be that Yh+1 = aj+h−k, . . . , Yk = aj−1. To recover γi, the parser consults the

state qt+h on top of stack and the current input symbol aj+h−k. It then shifts the h − k input

symbols aj+h−k, . . . , aj−1 and h− k appropriate state symbols onto the stack. It also advances the

input pointer to aj . Then, the parser reduces the string Y1 · · ·Yk to the nonterminal A by replacing

the top 2k stack symbols with A and an appropriate state symbol.

The above shift-and-reduce process is repeated until the sentential form γ0 = S is obtained.

For this reason, the LR parser is sometimes called a shift-reduce parser .

Clearly, the state symbols stored on the stack play a key role in dictating the actions of the

parser. Below we first give an example of LR parsing tables and show exactly how the parser

operates on a specific input. Then we will briefly sketch how the states are chosen for a grammar

and what they represent.

Example 5.4 Consider again the unambiguous grammar G9 given in Example 5.3. For conve-

nience, let us number the productions as follows.

(1) S → S + T

(2) S → T

(3) T → T ∗ F

(4) T → F

(5) F → n

(6) F → (S)

33

Table 4: The function ACTION (q, c) for the unambiguous grammar G9.

STATE n + ∗ () $

0 shf shf

1 shf acc

2 p2 shf p2 p2

3 p4 p4 p4 p4

4 shf shf

5 p6 p6 p6 p6

6 shf shf

7 shf shf

8 shf shf

9 p1 shf p1 p1

10 p3 p3 p3 p3

11 p5 p5 p5 p5

Tables 4 and 5 illustrate the functions ACTION (q, c) and GOTO(q,X) for the grammar. In the

first table, shf means shift, pi means reduce by production i, acc means accept, and blank means

reject. The states are numbered 0, 1, . . . , 11.

Now we demonstrate how the parser operates on the string (n + n) ∗ n. Table 6 shows the

content of the stack, the remaining input symbols, and the output after each step. It is easy to see

that the reverse sequence of the productions in the reduce steps constitute the rightmost derivation

of (n + n) ∗ n.

There are several techniques for constructing an LR parsing table, such as simple-LR (SLR),

canonical-LR, and lookahead-LR (LALR), as described by [Aho, Sethi and Ullman, 1985]. In gen-

eral, these techniques all use states that are sets of items of the form A → α · β, where A → αβ

is a production and the · marks a place in the right-hand side. Such items are commonly known

as the LR items. Each item expresses the assertion that the part α has already been obtained by

previous shift/reduce steps and pushed on the stack, and the part β is expected to be obtainable

34

Table 5: The function GOTO(q,X) for the unambiguous grammar G9.

STATE n + ∗ () $ S T F

0 5 4 1 2 3

1 6

2 7

3

4 5 4 8 2 3

5

6 5 4 9 3

7 5 4 10

8 8 11

9 7

10

11

35

Table 6: The steps in the LR parsing of (n + n) ∗ n.

STACK INPUT ACTION

0 (n + n) ∗ n$ shift

4(0 n + n) ∗ n$ shift

5n4(0 +n) ∗ n$ reduce by F → n

3F4(0 +n) ∗ n$ reduce by T → F

2T4(0 +n) ∗ n$ reduce by S → T

8S4(0 +n) ∗ n$ shift

6 + 8S4(0 n) ∗ n$ shift

5n6 + 8S4(0) ∗ n$ reduce by F → n

3F6 + 8S4(0) ∗ n$ reduce by T → F

9T6 + 8S4(0) ∗ n$ reduce by S → S + T

8S4(0) ∗ n$ shift

11)8S4(0 ∗n$ reduce by F → (S)

3F0 ∗n$ reduce by T → F

2T0 ∗n$ shift

7 ∗ 2T0 n$ shift

5n7 ∗ 2T0 $ reduce by F → n

10F7 ∗ 2T0 $ reduce by T → T ∗ F

2T0 $ reduce by S → T

1S0 $ accept

36

from the next few input symbols by some shift/reduce steps. Since at any given time the parser

may not be able to predict what input symbols should follow, it has to maintain a set of LR items

to deal with all possibilities.

Again, not all context-free grammars have effective LR parsers. For example, the grammar with

productions

S → 0S0|1S1|0|1|ε

cannot be handled by LR parsing. This grammar generates the set of all palindromes. The

grammars that have effective LR parsers are called LR grammars. In fact, there are context-free

languages that cannot be represented by any LR grammars. The set of palindromes is one such

language.

6 Defining Terms

ambiguous context-free grammar: a context-free grammar in which some derivable terminal

strings have two distinct derivation trees.

bottom-up parsing: a process of building a derivation tree from the leaves up to the root.

Chomsky normal form: a form of context-free grammar in which every rule has the form

A→ BC or A→ a, where A,B,C are nonterminals and a is a terminal.

context-free grammar: a grammar whose rules have the form A→ β, where A is a nonterminal

and β is a string of nonterminals and terminals.

context-free language: a language that can be described by some context-free grammar.

context-sensitive grammar: a grammar whose rules have the form α→ β, where α, β are strings

of nonterminals and terminals, and |α| ≤ |β|.

context-sensitive language: a language that can be described by some context-sensitive gram-

mar.

derivation or parsing: a sequence of applications of rules of a grammar that transforms the start

symbol into a given terminal string or sentential form.

derivation tree or parse tree: a rooted, ordered tree that describes a particular derivation of a

string with respect to some context-free grammar.

37

(formal) language: a set of strings over some fixed alphabet.

(formal) grammar: a description of some language, typically consisting of a set of terminals,

a set of nonterminals, a distinguished nonterminal called the start symbol, and a set of rules (or

productions) of the form α → β, which determine which substrings α of a sentential form can be

replaced by some another string β.

leftmost (or rightmost) derivation: a derivation in which at each step, the leftmost (respectively,

rightmost) nonterminal is rewritten.

LL parsing: a type of top-down parsing in which one reads the input from left to right in order

to reconstruct a leftmost derivation.

LL(k) grammar: a context-free grammar whose LL(k) parsing table has no multiply-defined

entries.

LL(k) parsing: an LL parsing that uses k symbols of lookahead.

LR parsing: a type of bottom-up parsing in which one reads the input from left to right in order

to reconstruct a rightmost derivation in reverse order of steps.

LR grammar: a context-free grammar that has an effective LR parser.

membership problem (or lexical analysis): the problem or process of deciding whether a given

string is generated by a given grammar.

parsing problem: the problem of reconstructing a derivation of a given input string in a given

grammar.

regular expression: a description of some language using the operators union, concatenation,

and Kleene closure.

regular language: a language that can be described by some regular expression, or equivalently,

by some right-linear/regular grammar.

right-linear or regular grammar: a grammar whose rules have the form A → cB, A → c, or

A→ ε, where A,B are nonterminals, c is a terminal, and ε is the empty string.

sentential form: a string of terminals and nonterminals obtained at some step of a derivation in

a grammar.

top-down parsing: a process of building derivation trees from the top (root) down to the bottom

(leaves).

38

References

[Aho, Sethi and Ullman, 1985] Aho, A.V., Ullman, J.D. and Sethi, I. 1985. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA.

[Angluin, 1980] Angluin, D. 1980. Finding patterns common to a set of strings. Journal of Computer
and System Sciences. 21:46-62.

[Chomsky, 1956] Chomsky, N. 1956. Three models for the description of language. IRE Trans. on
Information Theory. 2(2):113-124.

[Chomsky, 1963] Chomsky, N. 1963. Formal properties of grammars. In Handbook of Mathematical
Psychology Vol. 2, 323-418. John Wiley and Sons, New York.

[Chomsky and Miller, 1958] Chomsky, N. and Miller, G. 1958. Finite-state languages. Information
and Control. 1:91-112.

[Drobot, 1989] Drobot, V. 1989. Formal Languages and Automata Theory. Computer Science Press,
Rockville, MD.

[Floyd and Beigel, 1994] Floyd, R.W. and Beigel, R. 1994. The Language of Machines: an Intro-
duction to Computability and Formal Languages. Computer Science Press, New York.

[Gurari, 1989] Gurari, E. 1989. An Introduction to the Theory of Computation. Computer Science
Press, Rockville, MD.

[Harel, 1992] Harel, D. 1992. Algorithmics: The Spirit of Computing. Addison-Wesley, Reading,
MA.

[Harrison, 1978] Harrison, M. 1978. Introduction to Formal Language Theory. Addison-Wesley,
Reading, MA.

[Hopcroft and Ullman, 1979] Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA.

[Jiang et al., 1995] Jiang, T., Salomaa, A., Salomaa, K., and Yu, S. 1995. Decision problems for
patterns. Journal of Computer and System Sciences. 50(1):53-63.

[Kleene, 1956] Kleene, S. 1956. Representation of events in nerve nets and finite automata. In
Automata Studies, 3-41. Princeton University Press, NJ.

[Lind and Marcus, 1995] Lind, D. and Marcus, 1995 Symbolic Dynamics, Academic Press.

[Post, 1943] Post, E. 1943. Formal reductions of the general combinatorial decision problems. Amer.
J. Math. 65:197-215.

[Salomaa, 1966] Salomaa, A. 1966. Two complete axiom systems for the algebra of regular events.
J. ACM. 13(1):158-169.

[Searls, 1993] Searls, D. 1993. The computational linguistics of biological sequences. In Artificial
Intelligence and Molecular Biology. L. Hunter (ed.), MIT Press, 1993, pp. 47-120.

[Wood, 1987] Wood, D. 1987. Theory of Computation. Harper and Row.

39

Further Information

The fundamentals of formal languages and grammars can be found in many text books

including [Drobot, 1989, Floyd and Beigel, 1994, Gurari, 1989, Harel, 1992, Harrison, 1978,

Hopcroft and Ullman, 1979, Wood, 1987]. The central focus of research in this area has been

to find formal grammatical representations of languages that are very expressive and are yet easy

to parse. The research results have greatly benefited many fields of computer science, including

programming languages, compiler design, and natural language processing. The preceding chapter

presents the machine model counterparts of regular grammars, context-free grammars, context-

sensitive grammars, and unrestricted grammars, and the next chapter introduces the concepts of

decidability and undecidability, which has a close relation to formal grammars. The following an-

nual conferences present the leading research work in formal languages and grammars: International

Colloquium on Automata, Languages and Programming (ICALP), ACM Annual Symposium on

Theory of Computing (STOC), IEEE Symposium on the Foundations of Computer Science (FOCS),

ACM Symposium on Principles of Programming Languages (POPL), Symposium on Theoretical

Aspects of Computer Science (STACS), Mathematical Foundations of Computer Science (MFCS),

Fundamentals of Computation Theory (FCT), Foundation of Software Technology and Theoretical

Computer Science (FSTTCS), and Conference on Developments in Language Theory (DLT). There

are many related conferences, including Computational Learning Theory (COLT), Colloquium on

Trees in Algebra and Programming (CAAP), and International Conference on Concurrency Theory

(CONCUR), where either specific issues concerning formal grammars are considered or specialized

grammatical systems are studied for a specific application area. We conclude with a list of major

journals that publish papers in formal language theory: Journal of the ACM , SIAM Journal on

Computing , Journal of Computer and System Sciences, Information and Computation, Theory of

Computing Systems (formerly Mathematical Systems Theory), Theoretical Computer Science, In-

formation Processing Letters, International Journal of Foundations of Computer Science, and Acta

Informatica.

40

