
A Comparative Analysis of
Meta-programming and Aspect-Orientation

Suman Roychoudhury, Jeff Gray, Hui Wu, Jing Zhang, Yuehua Lin

{roychous, gray, wuh, zhangj, liny}@cis.uab.edu

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, Alabama
http://www.gray-area.org/Research

ABSTRACT
This paper presents an investigation into language constructs for
supporting improved separation of crosscutting concerns.
Traditionally, this separation has been performed using meta-
programming and other related techniques. A growing area of
research, called aspect-oriented software development, offers a
new approach. We describe several distinctive characteristics of
the two approaches with respect to their ability to modularize
crosscutting concerns. The paper also reports on a survey that
was conducted to assess software developers’ general intuition
relating to the comprehensibility of these techniques. Our initial
research suggests that aspect-orientation offers several improved
capabilities for realizing important software engineering
principles.

1. INTRODUCTION
Even though the general notion of separation of concerns is an
old idea, one can witness the nascence of a research area
devoted to the investigation of new techniques to support
advanced separation of concerns. It has been recognized by
numerous researchers that the software modularization
constructs developed over the past quarter-century are
sometimes inadequate for capturing certain types of concerns [2,
4, 9]. This has serious consequences with respect to modular
composition.

As noted in [9], previously defined modularization constructs
are most beneficial at separating concerns that are orthogonal.
However, these constructs often fail to capture the isolation of
concerns that are non-orthogonal. Such concerns are said to be
crosscutting and their representation is scattered, and tangled
among the descriptions of numerous other concerns. Two
concerns crosscut if the representation of one concern intersects
the representation of another. Crosscutting concerns are
denigrated to second-class citizens in most languages (i.e., there
is no explicit representation for modularization of crosscutting
concerns). As a result, crosscuts are difficult to compose and
change without invasively modifying the description of other
concerns (i.e., crosscuts are highly coupled with other concerns).

For example, in a very large system, logging method
entrance/exit calls may lead to scattering of the logging concern
across the object or functional boundaries. This may introduce
unnecessary noise into the system resulting in poor modularity.
Most operating system code provides a good repository for
observing the effects of crosscuts, where examples such as
prefetching and disk quota operations have been shown to be
difficult to modularize using traditional object-oriented
languages [1].

During the early part of the last decade, separation of
crosscutting concerns was attempted using meta-programming,
reflection, and other related techniques [2, 4, 8]. Such
techniques provided a separation of the traditional base part
(which describes the application) and the meta part (which
describes reflective information and adaptations to the
underlying base semantics). Although meta-programming
provides a powerful mechanism for adaptation and concern
separation, it often does so by sacrificing comprehensibility.
That is, the conceptual intention of a concern can be difficult to
discern in the presence of meta-level adaptation.

Recent research efforts, under the name of Aspect-Oriented
Software Development (AOSD), are exploring fundamentally
new ways to carve a system into a set of elemental parts in order
to support crosscutting concerns. The goal is to capture crosscuts
in a modular way with new language constructs called aspects
[4]. In AOSD, a translator called a weaver is responsible for
taking code specified in a traditional programming language,
and additional code in an aspect language, and merging them
together.

In this paper, we describe distinctive characteristics between
reflective meta-programming techniques and the new
capabilities offered by aspect-oriented programming (AOP). We
compare and contrast their capabilities with respect to their
ability to modularize crosscutting concerns to satisfy sound
principles of software development (e.g., the “Parnasian”
benefits of changeability, independent development, and
comprehensibility [5]). We compare the capabilities of
OpenJava [8] (a compile-time meta-object protocol for Java) and
AspectJ [4] (a general aspect-oriented language for Java). The
paper also reports on a survey that was conducted that assessed
software developers’ general intuition relating to the
comprehensibility of these techniques. Our initial research
suggests that AOP offers several improved capabilities for
realizing important software engineering principles.

2. BACKGROUND: OpenJava and AspectJ
"Meta" means that you step back from your own place.
What you used to do is now what you see. What you were is
now what you act on. Verbs turn to nouns. What you used
to think of as a pattern is now treated as a thing to put in
the slot of another pattern. A metafoo is a foo into whose
slots you can put parts of foo.” Guy Steele [7]

Smith defined procedural reflection as the concept of a program
knowing about its implementation and the context in which it is
executed [6]. A reflective system is capable of reasoning about
itself in the same way that it can reason about the state of some
part of the external world. Reflective systems must be causally
connected; that is, manipulation of the internal representation
structures directly affects the observable external behavior.
Reflective techniques play an important role for separation of
concerns, permitting a program to be written with a higher-level
of abstraction to support better modularization. Moreover,
reflective systems may provide meta-objects for intercepting
object behavior such as method execution, field access, method
call [2, 6, 8]. Java provides its own set of reflective APIs to
access an object’s structure, invoke an object’s method, and to
load a class at runtime. However, Java’s reflective API is a
weaker form of reflection known as introspection. A form of
reflection known as intercession provides additional reflective
power to intercept as well as alter the object behavior.

2.1 OpenJava
OpenJava is a compile-time extension to Java which has static
access to the data structures representing a program [8]. It
produces an object representing a logical structure of a class
definition for each class in the source code. This object is called
a class meta-object. Programmers may customize the definition
of the class meta-objects for describing adaptations to the
structure of the base program. Figure 1 shows a simple example
of OpenJava. In this example, the class Foo is a meta-class,
which is inherited from OJClass. In OpenJava, every meta-class
must inherit from OJClass, which is predefined in OpenJava.
The method translateDefinition() is also inherited from
OJClass, and is used to perform adaptation of the base class. In
this example, MyClass is a regular Java base class. The
instantiates clause declaration binds the meta-class Foo with
the declared class object by creating an instance of this meta-
class.

Figure 1. OpenJava Class Structure

Another representation of OpenJava adaptation is shown in
Figure 2. This figure shows a clear separation of the meta part
Foo from the base part MyClass. There is also a causal
connection between the meta and the base class, i.e., any action
performed by the base class is interpreted by its meta-object
class. For example, a method call on any method of the base

class can be trapped and corresponding changes in the behavior
of the base program may be translated using the
translateDefinition() method of the meta-object class.
A typical translation mechanism, as performed by OpenJava,
may be summarized as follows: -

1. Analyze the source program to generate a class meta-object

for each class.
2. Invoke the member methods of class meta-objects to perform

base-class adaptation.
3. Generate the regular Java source program reflecting the

modifications made by the class meta-objects.
4. Execute the regular Java compiler (javac) to generate the

corresponding byte code representation.

Figure 2. Base and Meta separation

2.2 AspectJ
A general aspect-oriented language for supporting separation of
crosscutting concerns is AspectJ [4]. Similar to OpenJava,
AspectJ is also an extension of regular Java, but unlike
OpenJava it uses an AOP model to assist in separating concerns.
A typical AOP model has 3 important elements [4]:

• the join point model (JPM): these are points in the runtime
execution of a program (e.g., method call/execution, field
get/set)

• pointcuts: the means for identifying join points
• advice: the means for specifying semantics at join points

(e.g., before/after/around advice)The JPM terminology has
several kinds of join points, for example, method call join
points, method execution join points, field get/set joint point,
exception handler execution join point.

A pointcut is a predicate that can match any given join point.
For instance, an example of a primitive pointcut in AspectJ is:

call (void Line.setP1(Point))

This pointcut specifies a ‘method call join point’ whose
structure matches the given method signature (in this case, the
setP1 method that is defined in class Line that takes a
Point argument and returns void).

An advice is an additional action to take at join points. In
general, there are 3 kinds of advice - before, after and around. A
before advice is invoked preceding the join point. An after
advice is called after processing any computation under a join
point, whereas an around advice wraps behavior at a join point.

class MyClass instantiates Foo
 extends MyObject implements MyInterface
{...}

class Foo extends OJClass
{
 void translateDefinition() {....}
}

A pictorial view of method call and method execution join
points is shown in Figure 3. In this figure, two method call join
points are pointed out (e.g., the call to the add method of
Figure, and the call to movedBy on myPoint). The method
execution join point for the show method of class Display is
also highlighted. All of these join points represent points in the
execution of the program that can be extended with advice in
order to capture a crosscutting concern.

Figure 3. Join Points

In AspectJ, pointcut and advice specifications combine to form
aspects. They play the critical role in encapsulating crosscutting
concerns into single separated source and subsequent
composition of the separated concerns into various structural
elements of the base object. A typical example of an aspect to
log method entrance and exit calls is shown in Figure 4. This
code may look simple but primarily it isolates the logging
concern into a single separated aspect, which can be eventually
weaved into any system that requires logging.

Figure 4. An AspectJ Example

3. A Qualitative Analysis of Capabilities
This section introduces the constructs within OpenJava and
AspectJ that support separation of crosscutting concerns. These
features are at the core of both languages, but definitely they are
not a complete overview of AspectJ and OpenJava. By
comparing these key features we would like to illustrate the
enhanced capability of one extension over the other. We start
with comparing their semantics using a simple figure editor
system shown in Figure 5 (this example is adapted from [4]).

Figure 5. UML for Figure Editor (adapted from [4])

In this system, the Figure class is a container class, which
consists of FigureElements, which can either be Points
or Lines. A single Display class is used to view elements of
the container class.

The system has a two level hierarchy with base objects like
Points and Lines residing in the lowest level. The interface
FigureElement defines a moveBy method that is
implemented by each of these base objects. The moveBy
method is used to shift the base object by a scalar depending on
the input parameters. Moreover, the Display must also be
updated or refreshed whenever a figure element moves.

A regular Java implementation of the Point class to meet this
requirement needs an explicit call to the display update method
(i.e., Display.getContext().update) in each of the
methods that move a figure element. The Java implementation is
illustrated in Figure 6. Those calls, or rather the concept that
those calls should happen at each move operation, are the
crosscutting concern in this case. The Point class, which
previously seemed to exhibit good modularity, now finds itself
to be coupled with the concern of the Display class. The
Line object would also require similar crosscutting
implementation (the crosscutting DisplayUpdating box in
Figure 5 even shows this). This example problem might appear
to be simple, but in a complex scenario with several hundreds of
such classes being involved, this could severely damage the
modularity of the system and increase the cost of maintenance.

aspect logEntXitCalls {

 before(): execution(* *.*(..)) &&
 !within (logEntXitCalls) {
 LogToOutputstream();
 }

 after (): execution(* *.*(..)) &&
 !within (logEntXitCalls) {
 LogToOutputstream();
 }

 void LogToOutputstream() {…}

}

Figure 6. Java Implementation Showing the Crosscutting

Nature of DisplayUpdating

OpenJava, however, can address this problem by encapsulating
the crosscutting part of the code into a single separated module.
The following figure shows the OpenJava code, which does this
separation. In this figure, the translateDefinition()
function searches for setter methods in both Point and Line
classes and adds the Display.getContext().update()
statement after the set assignment in each matching. The
OpenJava compiler inserts this separated concern back into the
base class during compile time.

Figure 7. OpenJava DisplayUpdating Meta-object Class

Such a mechanism decouples the Point class from the concern
of the Display class. Thus, the Java implementation of the
base classes can be written with the DisplayUpdating
concern factored out by instantiating the associated meta-object.
This is shown in Figure 8.

Figure 8. Removal of DisplayUpdating Concern

However, such an approach introduces new drawbacks. As
shown in Figure 8, OpenJava enforces the instantiates clause to
be declared along with the base class declaration. Thus, the
Point class and the Line class now need to add the
instantiates clause along with their declaration. This may appear
to be acceptable when the number of such base classes is few,
but as the number increases, it induces an additional burden and
cost on maintenance and changeability. An additional
disadvantage is that the structure of the separated module does
not explicitly tell us about the names of the base classes that are
being affected by the crosscutting concern.

An alternative approach to the same problem using AspectJ
produces an improved solution, which not only separates out the
crosscutting element but also preserves the integrity of the base
class (i.e., no structural changes are needed to the base).
Implementing the “display updating” functionality using
AspectJ is rather straightforward. Figure 9 depicts an AspectJ
solution (adapted from [4]) of the same problem. The solution
may appear to be similar but the structure of the crosscutting
concern is captured more explicitly in AspectJ. The move
pointcut clearly states the names of each method in each class
that are involved in the crosscutting process, so the programmer
can easily identify the part of the code that needs to be updated
after each move (additional tool support for most major Java
environments is also available to assist in understanding more
complex aspects).

Moreover, this technique does not enforce the programmer to
manually change each of the base classes to support separation
of the crosscutting concerns. The AspectJ compiler can
dynamically weave in all the separated concerns into the base
classes at compile time.

In addition, this functionality is pluggable. For instance, if the
“display updating” feature needs to be removed from the
system (either because it is no longer needed, or because it is not
needed in certain configurations), one needs to simply recompile
the base classes without binding the aspect. However, in
OpenJava this would require a programmer to manually visit
each affected class and remove the instantiates clause (see the
first line of Figure 8).

public class Point implements FigureElement
 private int x=0, y=0;

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x = x;
 // cross-cutting concern
 Display.getContext().update();
 }

 public void setY(int y) {
 this.y = y;
 // cross-cutting concern
 Display.getContext().update();
 }

 public void moveBy(int dx, int dy) {
 setX(getX() + dx);
 setY(getY() + dy);
 }
…
}

public class DisplayUpdating
 instantiates MetaClass extends OJClass
{

 public void translateDefinition() {
 statement stmt;
 OJMethod[] methods = getDeclaredMethods();
 for (int i=0; i<methods.length(); ++i) {
 if(methods[i].getName().equals(“setX”) ||
 methods[i].getName().equals(“setY”) ||
 methods[i].getName().equals(“setP1”) ||
 methods[i].getName().equals(“setP2”) ||
 {
 stmt=makeStatement(“Display.getContext().update();”);
 methods[i].getBody().insertElement(stmt, 1);
 }
 }
}

public class Point instantiates DisplayUpdating
 implements FigureElement
 private int x=0, y=0;

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x = x;
 }

 public void setY(int y) {
 this.y = y;
 }

 public void moveBy(int dx, int dy) {
 setX(getX() + dx);
 setY(getY() + dy);
 }
…

Figure 9. An Aspect to Control DisplayUpdating

Another distinctive advantage of AspectJ is the use of its
wildcards. For instance, the call pointcuts (Figure 9) used in
display updating of the Point and Line objects can be further
reduced to a single primitive call statement; for example,

call(* *.set*(*))

The use of wildcards allows new figure elements like circle or
rectangle to simulate movement without any change of the
pointcut move.

Both OpenJava and AspectJ support an implicit form of
invocation that leads to better separation of crosscutting
concerns. This offers improved capabilities for independent
development. As shown here, AspectJ has an advantage over
OpenJava with respect to the ability to make changes to new
concerns. Regarding the more subjective characteristic of
comprehensibility, the reader is asked to compare Figure 7 and
Figure 9 to arrive at their own opinion as to which technique is
more comprehensible. We also conducted a survey to gain some
additional understanding of the comprehensibility offered by
each technique. This survey is described in the next section.

4. COMPREHENSIBILITY ASSESSMENT
In this section we will primarily analyze the comprehensibility
of these two techniques in the form of a survey that was
conducted to evaluate software developers’ general intuition in
understanding the language constructs and features of both
OpenJava and AspectJ. The survey was handed out to 19
industry professionals and students in the Birmingham and
Nashville areas. Each of these individuals had previous
development experience using OOP techniques and Java.

The survey consisted of a set of four simple crosscutting
problems with their corresponding analogous solutions in
OpenJava and AspectJ. In addition to answering the questions,
the participants were requested to indicate the time taken to
comprehend each question in each of the sections. The actual
survey can be found at http://www.gray-area.org/Research.

The first question showed how the behavior of execution of a
method in a specific class could be altered using OpenJava and
AspectJ. The survey participants were asked to predict the
changes in the class behavior. The second question was an
extension to the first one. The participants were asked to
describe how the first question could be extended to the whole
system. Question three tested the ability to comprehend meta-
objects and aspects that were used for pre and post condition
checks on method parameters. It also showed how the

parametric values could be overwritten by the values supplied in
the separated aspects and meta-objects. The last question was
based on tracing name-based method patterns in a typical class
object. Participants were asked to interpret the results surfacing
from such behavioral patterns.

Although there are many other complex features that are
individually supported by OpenJava and AspectJ, the goal of
this survey was to evaluate the reactions of software developers
to the new language constructs as provided by these two
languages.

The following charts summarize the results obtained from the
survey. Figure 10 shows the accuracy level of the group who
participated in the survey. It indicates that almost 75% of the
participants were able to correctly predict AspectJ related
problems whereas the accuracy level for OpenJava was around
60%.

0
10
20
30
40
50
60
70
80
90

P1 P3 P4

AspectJ
OpenJava

Figure 10. Accuracy Level of Participants

The next chart shows the average response time of the
participants in comprehending each problem. This indicates that
OpenJava based questions took nearly four minutes (on an
average) to answer. The equivalent AspectJ based questions
took half of the time to answer compared to OpenJava.

0

1

2

3

4

5

6

7

P1 P3 P4

AspectJ
OpenJava

Figure 11. Response Time of Participants

Finally, we present the general view of the participants in
understanding the constructs of these two languages. This is
shown in Figure 12.

Almost 75% of the participants’ initial reaction was that AspectJ
was easier to understand whereas only 13 % were in favor of
OpenJava.

public aspect DisplayUpdating {
 pointcut move() :
 call(void FigureElement.moveBy(int, int) ||
 call(void Line.setP1(Point) ||
 call(void Line.setP2(Point) ||
 call(void Point.setX(int) ||
 call(void Point.setY(int));

 after() returning : move()
 Display.getContext().update();
 }
}

No
Comment

s
12%

AspectJ
75%

OpenJava
13%

Figure 12. General Preference of Participants

5. CONCLUSION
“Program structure should be such as to anticipate its
adaptations and modifications. Our program should not
only reflect (by structure) our understanding of it, but it
should also be clear from its structure what sort of
adaptations can be catered for smoothly. Thank goodness
the two requirements go hand in hand.” E. Dijkstra

AspectJ and OpenJava are both compile-time extensions to Java
that uses intercessional reflective techniques to alter the
semantics or behavior of objects by separating crosscutting
concerns in a modular implementation.

Aspects written in AspectJ are explicit and easy to comprehend.
Moreover, the inherent modular characteristics of aspects enable
easy plug-and-play functionality. In addition, the power of
AspectJ is captured in the core language constructs making it
possible for safer use. Furthermore, adoption of AspectJ into
existing systems is relatively straightforward with negligible
impact on the changed system. Maintainability of such systems
is easier and the capability to adapt to future changes is
significantly improved.

Although OpenJava also provides a powerful mechanism for
adaptation and concern separation, it often does so by sacrificing
comprehensibility. That is, the conceptual intention of a concern
can be difficult to discern in the presence of meta-level
adaptation. In addition, the presence of instantiates clause in
every base object makes it difficult to perform an easy plug-and-
play functionality. The language constructs provide greater
power to the programmer, which may, however, result in unsafe
use. Also, adoption of OpenJava into existing projects is
relatively more complex and may require more time, suggesting
a more cautious approach to adoption.

6. ACKNOWLEDGEMENT
This work is funded by the DARPA Information Exploitation
Office (DARPA/IXO), under the Program Composition for
Embedded Systems (PCES) program.

7. REFERENCES
[1] Yvonne Coady and Gregor Kiczales, “Back to the Future:

A Retroactive Study of Aspect Evolution in Operating
System Code,” Second International Conference on
Aspect-Oriented Software Development, Boston, MA,
March 2003.

[2] Krzysztof Czarnecki and Ulrich Eiseneker, Generative
Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.

[3] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow,
The Art of the Metaobject Protocol, MIT Press, 1991.

[4] Gregor Kiczales, Eric Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William Griswold, “Getting Started with
AspectJ,” Communications of the ACM, October 2001, pp.
59-65.

[5] David Parnas, “On the Criteria To Be Used in
Decomposing Systems into Modules,” Communications of
the ACM, December 1972, pp. 1053-1058.

[6] Brian Smith, “Reflection and Semantics in Procedural
Languages,” Technical Report 272, Massachusetts Institute
of Technology, Laboratory for Computer Science, 1982.

[7] Guy Steele, “Growing a Language,” Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), Keynote Address, Vancouver, British
Columbia, Canada, October 22, 1998.

[8] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano,
“OpenJava: A Class-based Macro System for Java,” in
Reflection and Software Engineering (W. Cazzola, R. J.
Stroud, and F. Tisato, eds.), LNCS 1826, Springer Verlag,
2000.

[9] Peri Tarr, Harold Ossher, William Harrison, and Stanley
Sutton, “N Degrees of Separation: Multi-Dimensional
Separation of Concerns,” International Conference on
Software Engineering (ICSE), Los Angeles, California,
May 1999, pp. 107-119.

