
RE-Tree: An Efficient Index Structure for Regular Expressions

Chee-Yong Chan, Minos Garofalakis, Rajeev Rastogi
Bell Labs, Lucent Technologies�

cychan,minos,rastogi � @research.bell-labs.com

Abstract
Due to their expressive power, Regular Expressions
(REs) are quickly becoming an integral part of lan-
guage specifications for several important application
scenarios. Many of these applications have to manage
huge databases of RE specifications and need to pro-
vide an effective matching mechanism that, given an
input string, quickly identifies the REs in the database
that match it. In this paper, we propose the RE-tree, a
novel index structure for large databases of RE specifi-
cations. Given an input query string, the RE-tree speeds
up the retrieval of matching REs by focusing the search
and comparing the input string with only a small frac-
tion of REs in the database. Even though the RE-tree is
similar in spirit to other tree-based structures that have
been proposed for indexing multi-dimensional data, RE
indexing is significantly more challenging since REs
typically represent infinite sets of strings with no well-
defined notion of spatial locality. To address these new
challenges, our RE-tree index structure relies on novel
measures for comparing the relative sizes of infinite
regular languages. We also propose innovative solu-
tions for the various RE-tree operations, including the
effective splitting of RE-tree nodes and computing a
“tight” bounding RE for a collection of REs. Finally,
we demonstrate how sampling-based approximation al-
gorithms can be used to significantly speed up the per-
formance of RE-tree operations. Our experimental re-
sults with synthetic data sets indicate that the RE-tree
is very effective in pruning the search space and easily
outperforms naive sequential search approaches.

1 Introduction

Regular expressions (REs) provide an expressive and pow-
erful formalism for capturing the structure of messages,
events, and documents. Consequently, they have been used
extensively in the specification of a number of languages
for important application domains, including the XPath
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pattern language for XML documents [7], the policy lan-
guage of the Border Gateway Protocol (BGP) for propa-
gating routing information between autonomous systems in
the Internet [21], and the UNIX shell’s grep utility. Many
of these applications have to manage large databases of RE
specifications and need to provide an effective matching
mechanism that, given an input string, quickly identifies all
the REs in the database that match it. This “RE retrieval”
problem is important for a variety of software components
in the middleware and networking infrastructure of the In-
ternet. We list some of these application domains below.

� XML Filtering. Information dissemination applications
extensively use document-filtering techniques to avoid
flooding users with unnecessary information. The key idea
is to maintain, for each user, a profile that captures the
user’s interests/preferences, and transmit to the user only
documents that match the profile. While most existing
systems for selective dissemination of information typi-
cally use simple keywords to specify profiles, the grow-
ing momentum of XML as the standard for information
exchange on the Internet has recently prompted proposals
that use more powerful RE-based languages for express-
ing user profiles [1]. The primary reason for this is that
XML documents are structured, and thus REs provide a
succinct syntax for creating more accurate and focused pro-
files. More specifically, REs can be used to specify match-
ing constraints on the sequence of elements along specific
paths in the XML-document tree. Systems for filtering
XML documents [1, 5, 11] represent user interests using
XPath expressions [7] which incorporate a restricted form
of REs.

� XML Routing. XML routers route XML documents
based on their content. By directing XML traffic to the
least loaded-application server that is capable of process-
ing a request, an XML router can balance load and boost
Web site performance. Again, an RE-based language of-
ten provides a succinct and convenient tool for expressing
the set of rules for routing incoming XML traffic. As an ex-
ample, the Intel NetStructure XML Accelerator product [9]
uses XPath 1.0 for specifying the rules for directing XML
transactions to the appropriate application servers.

� XML Classification. As XML becomes a popular stan-
dard for exchanging data on the Web, the volume of XML-
encoded documents on the Web is expected to grow rapidly
in coming years. Document Type Descriptors (DTDs) are
RE-based expressions that serve the role of schemas spec-



ifying the internal structure of XML documents. However,
DTDs are not mandatory and an XML document may not
always have an accompanying DTD. Thus, in many cases,
it becomes necessary to identify the subset of a “universe”
of known DTDs that match a new XML document. Iden-
tifying matching DTDs for XML documents, besides en-
abling document typing and classification, is also crucial
for the efficient storage and effective querying of XML
data [10].

� BGP Routing. In the BGP4 Internet routing proto-
col [21], routers transmit advertisements to neighboring
routers; each advertisement contains a destination IP ad-
dress reachable from the router as well as the sequence
of routing systems on the path from the router to the
destination. In case a router receives multiple advertise-
ments (from different neighbors) for the same destina-
tion, the BGP4 policy language allows for priorities to
be assigned to advertisements based on the correspond-
ing routing-system sequences. (The advertisement with the
highest priority eventually determines the route to the des-
tination). The BGP4 policy language essentially allows for
network administrators to specify a set of REs (on routing-
system sequences) and associate priorities with each RE.
Advertisements containing routing-system sequences that
match a specific RE are then assigned the corresponding
priority.

Another application involves finding the root-cause of
a fault in a network by matching the sequence of events
(generated when a network fault occurs) to a database of
RE patterns that capture the association between high-level
fault patterns and their root causes. Clearly, the above-
mentioned applications have a critical need for a scalable
and efficient structure that can index large numbers of REs
and that can quickly retrieve all REs matching a given input
string. For the XML-filtering application, the input string
is a path in the XML document and the REs are user pro-
files, while for BGP routing, the input string is the routing
system sequence in an advertisement and the REs are the
BGP policies.

In this paper, we propose the RE-tree, a novel index
structure for performing fast retrievals of REs that match
a given input string. The RE-tree, to the best of our knowl-
edge, is the first truly scalable index structure that can han-
dle the storage and retrieval of REs in their full generality.
The only prior work along these lines that we are aware of
are indexing schemes for filtering XML documents based
on XPath expressions [1, 5, 11]. However, while the XPath
language allows rich patterns with tree structure to be spec-
ified, it lacks the full expressive power of REs (e.g., XPath
does not permit the RE operators � ,

�
and � to be arbitrarily

nested), and thus extending XFilter to handle general REs
will most likely be difficult. Further, these XPath-based
methods are designed for indexing main-memory resident
data; in contrast, REs in the RE-tree are organized hierar-
chically (in a manner similar to the R-tree [14]), and thus
the RE-tree is well-suited for disk-resident data.

The task of indexing REs is challenging because REs

typically represent infinite sets with no well-defined notion
of spatial locality. While indexing of documents (which
are essentially a finite set/bag of elements) has been exten-
sively studied by the IR community [3], we are not aware of
any indexing techniques for infinite sets. The RE-tree em-
ploys a number of novel and sophisticated techniques for
indexing infinite regular languages, which we list below.

� Novel Measures for Comparing the Relative Sizes
of Infinite Regular Languages. We develop two
novel measures for the size of an infinite regular lan-
guage – the first counts the number of strings in the
language that are less than or equal to a certain size,
and the second information-theoretic measure is based
on the cost (in bits) of encoding random samples in the
language. The latter measure is inspired by a general
observation in information theory that the cost of en-
coding a random element of a set is proportional to the
set’s size.

� Novel Algorithms for Splitting and Generalizing a
Set of REs. Similar to the R-tree, when an RE-tree in-
dex node overflows, the set of REs in the node are split
and two new compact parent REs that are more gen-
eral than the two subsets of REs (due to the split), are
computed. We show that both splitting and generaliz-
ing a set of REs are NP-hard problems, and present
heuristics for these operations in the context of the
RE-tree.

� Novel Sampling-Based Approximation Algorithms
for Speeding RE-tree Operations. Specifically, we
show how random samples of RE languages can be
used to efficiently compute approximate counts (of
the number of strings with a fixed length in the lan-
guage) and samples for unions/intersections of regu-
lar languages. These counts and samples are impor-
tant for the RE-tree split and generalize operations.
Also, we devise a novel practical algorithm that em-
ploys a combination of dynamic programming and
sampling to compute counts/samples for an RE using
its non-deterministic finite automaton representation.
Previous algorithms computed these after converting
the RE to a deterministic finite automaton (see [17]),
which can be fairly expensive.

To measure the effectiveness of the RE-tree in retrieving
the set of REs that match an input query string, we con-
ducted an extensive experimental study with synthetic data
sets. Our experimental results indicate that the RE-tree
can drastically reduce the number of RE-comparison oper-
ations and easily outperforms naive sequential-search ap-
proaches, improving the overall search performance by a
factor of approximately 2 on the average.

The remainder of this paper is organized as follows. We
first present an overview of the RE-tree in Section 2 and
identify the key design issues. Section 3 describes some
fundamental algorithms for counting and sampling regular
languages. Building on top of these algorithms, we propose
two different measures for comparing the relative sizes of
infinite regular languages in Section 4. Section 5 then de-



scribes in detail our algorithms for the various RE-tree op-
erations. In Section 6, we present the results of our ex-
perimental study comparing the RE-tree against sequential-
search approaches. Finally, Section 8 concludes the paper
with some directions for future research.

Due to space constraints, we do not include proofs of
theorems in the body of the paper; the complete details can
be found in the full version of this paper [6].

2 Overview of RE-trees

An RE-tree indexes a large collection of REs such that,
given an arbitrary input string � , REs in the collection
that match � can be retrieved quickly and efficiently. In
this section, we first present an overview of the RE-tree in-
dex structure. Although the design principles behind the
RE-tree are similar in spirit to those in the R-tree spatial
index [14], the application of these principles to indexing
REs actually reveals a number of interesting algorithmic is-
sues and tradeoffs that require novel techniques. We iden-
tify these new design issues in Section 2.2, deferring the
details of our solutions to Section 5. Table 1 summarizes
some of the key notation used in this paper.

Symbol Description�
Alphabet over which REs are defined�����
Automaton transition function� �	�
Number of states in automaton

�
 � � �
Language of automaton

�
(i.e., strings accepted by

�
)
�� � � �

Set of length- 
 strings accepted by automaton
�� 
 � � � �

Measure for size of

 � � ����������

Automaton that accepts strings in

 � ��� � � 
 � ��� �� ��� � �

Automaton that accepts strings in

 � � � � � 
 � � � �� Minimum occupancy for each RE-tree node� Maximum number of states for a bounding automaton

Table 1: Notation.

2.1 Index Structure

An RE-tree is a dynamic, height-balanced, hierarchical in-
dex structure where leaf nodes contain data entries corre-
sponding to the indexed REs, and internal nodes contain
“directory” entries that point to nodes at the next level of
the index. Specifically, each leaf node entry is of the form�������! #"

, where
���

is the unique identifier of an RE $ and 
is a finite automaton representing $ [15]. Each inter-

nal node stores a collection of finite automata; and each
node entry is of the form

�% &�%')(�*+"
, where

 
is a finite au-

tomaton and
'�(�*

is a pointer to some node , (at the next
level) such that the following containment property is satis-
fied: If for a set of automata - , . � - "0/�132�46587 . �9 ;:%" ,
and - � , " denotes the collection of automata contained in
node , , then . � - � , "<">= . �9 #"

. We refer to the au-
tomaton

 
as the bounding automaton for - � , " . The

containment property is key to improving the search per-
formance of hierarchical index structures like RE-trees: if
a query string � is not contained in . �9 #"

, then it follows
that �@?A . �9 : " for all

 : A - � , " . As a result, the

entire subtree rooted at , can be pruned from the search
space. Clearly, the closer . �% #"

is to . � - � , "<" , the more
effective this search-space pruning will be.

In general, there are an infinite number of bounding au-
tomata for - � , " with different degrees of precision from
the least precise bounding automaton with . �9 #"B/DC

�
to the most precise bounding automaton, referred to as the
minimal bounding automaton, with . �% #"0/ . � - � , "E" .

Since the storage space for an automaton is dependent
on its complexity (in terms of the number of its states and
transitions), there is a space-precision tradeoff involved in
the choice of a bounding automaton for each internal node
entry1. Thus, even though minimal bounding automata re-
sult in the best pruning due to their tightness, it may not be
desirable (or even feasible) to always store minimal bound-
ing automata in RE-trees since their space requirement can
be too large (possibly exceeding the size of an index node),
thus resulting in an index structure with a low fan-out.
Therefore, to maintain a reasonable fan-out for RE-trees,
we impose a space constraint on the maximum number of
states (denoted by F ) permitted for each bounding automa-
ton in internal RE-tree nodes.

The automata stored in RE-tree nodes are, in general,
Non-deterministic Finite Automata (NFAs) with a mini-
mum number of states [15]. Also, for space efficiency,
we require that each individual RE-tree node contains at
least G entries. An example RE-tree is illustrated in Fig-
ure 1, where only the top three levels of internal nodes are
shown. Each internal node has between 2 and 3 entries,
with each

 :
representing a bounding automaton; the de-

tails of some of these automata are shown in the table on the
right in the form of REs (for conciseness). Note that each
pair of parent-child node entries satisfies the containment
property.

M1 M2

M3 M4 M5 M6 M7

M8 M9 M10 M12M11 M13 M14 M15 M16 M17 M19M18

M2

M6

M16

M18

M19

M7

 a ( a | b | c | e)* (b | d | e)*

 a ( a | b | c )*

 a b ( b | ac | eb )* (b | d | e)

 a ( a | b )  c* 
 a a ( a | b | c )*  c 

a b b* ( d | e )

 a b (ac | eb)* b

M17

Figure 1: RE-tree Example.

2.2 Design Issues

At a high level, RE-trees are conceptually similar to other
hierarchical, spatial index structures, like the R-tree [14];
this is also true for RE-tree search and maintenance algo-
rithms. RE-tree search simply proceeds top-down along
(possibly) multiple paths whose bounding automaton ac-
cepts the input string; RE-tree updates try to identify a
“good” leaf node for insertion and can lead to node splits
(or, node merges for deletions) that can propagate all the
way up to the root (details can be found in [6]). There

1This is in contrast to R-trees, where the space of a bounding rectangle
is independent of its precision, and therefore the bounding rectangles in
R-trees are all minimal bounding rectangles.



is, however, a fundamental difference between the RE-tree
and the R-tree in the indexed data types: regular languages
are much more complex objects than multi-dimensional
rectangles. This difference mandates the development of
novel algorithmic solutions for the core RE-tree operations.
Our main goal for the RE-tree is to optimize search per-
formance, and the key guiding principle for achieving this
goal is to keep each bounding automaton

 
in every inter-

nal node as “tight” as possible. Thus, if
 

is the bounding
automaton for - � , " , then . �9 #"

should be as close to. � - � , "E" as possible. More specifically, the three core
new problems that we need to address in the RE-tree con-
text can be defined as follows (the algorithms shown in the
parentheses correspond to our solutions and are described
in detail later in the paper).

(P1) Selection of an optimal insertion node (Algorithm
CHOOSEBESTFA). The goal here is to choose an insertion
path for a new RE that leads to “minimal expansion” in the
bounding automaton in each internal node. Thus, given the
collection of automata - � , " in an internal index node ,
and a new automaton

 
, we need to find the optimal

 : A
- � , " to insert

 
such that

� . �% :9" � . �% #" ��� � . �9 ;:%" �
is

minimum (or equivalently,
� . �9 : "�� . �% #" �

is maximum).

(P2) Computing an optimal node split (Algorithm
SPLITFA). When splitting a set of REs during an RE-tree
node-split, we seek to identify a partitioning that results
in the minimal amount of “covered area” in terms of the
languages of the resulting partitions. More formally, given
the collection of automata - /��  	� �  �
 �

� � �
�! 
���

in an
overflowed index node, we want to find the optimal parti-
tion of - into two disjoint subsets - �

and - 

such that� - � ��� G ,

� - 
 ��� G and
� . � - ��" ��� � . � - 
 " �

is mini-
mum.

(P3) Computing an optimal generalized automaton (Al-
gorithm GENERALIZEFA). During insertions, node-splits,
or node-merges, we need to be able to identify a bounding
automaton for a set of REs that does not cover too much
“dead space”. Thus, given a collection of automata - , we
seek to find the optimal generalized automaton

 
such that�  ��� F , . � - " = . �% #"

and
� . �% #" �

is minimum.

The goal of the above operation specifications is to max-
imize the pruning during search by keeping bounding au-
tomata tight. In (P1), the automaton

 :
for which . �9 ;:9"

expands the least due to the insertion of
 

is chosen to
insert

 
. The set of automata - are split into two tight

clusters in (P2), while in (P3), we are interested in finding
the most precise automaton covering the set of automata in- and with no more than F states. As discussed earlier, the
restriction on the number of states is imposed to keep the
fan-out of each node high since this is critical to improving
search performance. Essentially, (P3) represents the space-
precision tradeoff for bounding automata in RE-trees.

Note that while (P3) is unique to RE-trees, both (P1)
and (P2) have their equivalents in R-trees. Examples of
heuristics that have been proposed for (P1) in R-trees in-
clude minimizing the increase in the area of the minimum
bounding rectangle (MBR) [14], and minimizing the over-

lap among the MBRs within the node [4]. The heuristics
for (P2) in R-trees are similar to those for (P1); examples
include minimizing the total area of the two MBRs [14],
and minimizing the area of the intersection between the
two MBRs [4]. The aim of all these heuristics is to min-
imize the number of visits to nodes that do not lead to any
qualifying data entries.

Although the “MBRs” in RE-trees (which correspond
to regular languages) are very different from the MBRs in
R-trees, the intuition behind minimizing the area of MBRs
(total area or overlapping area) in R-trees should be effec-
tive for RE-trees as well. The counterpart for area in an
RE-tree is

� . �% #" �
, the size of the regular language for

 
.

However, since a regular language is generally an infinite
set, we need to develop new measures for the size of a reg-
ular language or for comparing the sizes of two regular lan-
guages.

3 Counting and Sampling ���������
Before defining size measures for infinite regular languages
in the next section, we first describe two fundamental al-
gorithms for counting and sampling that form the basis
of our definitions. The first algorithm counts the num-
ber of length-  strings accepted by an automaton

 
(i.e.,� ."! �% #" �

), while the second algorithm generates a random
sample of .#! �% #"

. We begin by presenting the algorithms,
originally proposed in [17], for the simpler case when

 
is

a DFA. We then present novel practical counting and sam-
pling algorithms for the case when

 
is an NFA.

Let $ �&% �  " denote the number of distinct length-  paths
that can be generated using an automaton

 
(with start

state
%('

) from state
%

to any accepting state.

3.1 Algorithms for DFAs

For the case where
 

is a DFA,
� . ! �9 #" � / $ �)% ' �  " .

Clearly, for  /+*
, we have $ �&% �,* " /.-

if
%

is an ac-
cepting state, and 0 otherwise. For  �/-

, $ �&% �  "
can be computed recursively as follows [17]: $ �)%8�  "B/021 5436587�96:<;>=?5 1(@ $ � ( �  �2- "

. Thus, dynamic programming
can be used to compute $ �&% �E��" for all states

%
, first for

� /A*
and then for successively increasing values of

�
(until

� /
 ) using the computed results for

���B-
. Since each $ �&% �E��"

is computed by considering all states reachable from state
%

with a single transition, each $ � �
"

value can be computed inC ��DFE>G6� � C � � �  �H� "
time. Thus, since there are

�  �  values
in $ � �

"
, it follows that there is an

C �  �  �IDFE>GJ� � C � � �  �H� "
algorithm to compute

� . : �% #" �
for all

-�� �"�  .
We now explain how to generate a random string from."! �9 #"

based on the computed values of $ � �
"
. Consider

the collection of all length-  strings that can be gener-
ated from some state

%
to any accepting state. Then the

probability that a randomly selected string from this col-
lection has K A C as the first symbol is given by L

;M7N5 !�O � @L
;>=?5 ! @ ,

where
(�/QP �&% � K " . Thus, a uniformly random string from. ! �9 #"

can be generated iteratively by randomly choosing
a transition at each state beginning from the start state as



Algorithm GENRANDOMSTRING
� ������� � �

Input:
�

is a DFA,
�

is a state in
�

.� is a length parameter, ����� .
Output: A random string in



	 � � �
.

1) for 
�� 
 � downto 1 do
2) Select transition � out of

�
from

�
with probability������� ��� ���������� � � , where ��
 ��� ��� � � ;

3) Let � � be the selected transition;
4)

� � 
 � � ��� � � � ;
5) return � 	! � 	 � �  " " � � ;

Figure 2: Algorithm for Generating a Random String in. ! �9 #"
.

shown in Figure 2. Algorithm GENRANDOMSTRING in
the figure when invoked with input parameter

% / % '
re-

turns a random string from . ! �9 #"
. It is straightforward

to show that if
% ' ��% ! ��% !�O � �$#%#$#��?% � denote the sequence of

states visited by the algorithm, then the probability that a
string � A . ! �% #"

is returned by Algorithm GENRAN-
DOMSTRING is L

;>= & 5 !�O � @L
; =('85 ! @*) L

;>= &,+.- 5 !�O 
 @L
; = & 5 !�O � @/)

� � �
) L

;>= - 5 ' @L
;>=(0 5 � @ /�

L
;>= ' 5 ! @ / �1 2 & ; 2 @ 1 . Note that the time complexity of the

algorithm is
C �  " if the function $ � �

"
has been precom-

puted. Also, a uniform random sample of . ! �9 #"
of size3

can be generated by repeatedly invoking GENRANDOM-
STRING until it has returned

3
distinct strings.

3.2 Algorithms for NFAs

For the case where
 

is an NFA2, $ �&%(' �  " � � .#! �% #" �

since there can be multiple accepting paths in an NFA for a
given string. However, the problem of computing

� . ! �% #" �

for an NFA
 

is 4 P-complete.
An unbiased estimator for

� . ! �% #" �
can be computed as

follows. Let
'

be a uniformly generated accepting path of
length  in

 
, and let � be the string labelling

'
. Then

� . ! �% #" �65 L
;>= ' 5 ! @7 , where 8 is the number of accepting

paths of � in
 

. Essentially, the unbiased estimator is
computed by scaling down the total number of length-  ac-
cepting paths in

 
with the count of the number of accept-

ing paths for a randomly generated length-  string. Note
that since there is a one-to-one correspondence between an
accepting string and an accepting path in a DFA, Algorithm
GENRANDOMSTRING (in Figure 2) can be used to gener-
ate the path

'
. The number of accepting paths for � can be

derived by traversing
 

with � .
However, as pointed out in [17], the above estimator can

have a very large standard deviation. Although [17] pro-
poses a more accurate, randomized algorithm for approxi-
mating

� .#! �% #" �
, it is not very useful in practice due to its

high time complexity of
C �  :9<;>= ; ! @ " .

In Figure 3, we present a novel and practical al-
gorithm for approximately counting strings in . ! �9 #"
for an NFA

 
that has a lower time complexity ofC �  
 �  �


 DFE>GJ� � C � � �  �H� "
. Similar to earlier approaches,

the algorithm uses dynamic programming to compute
counts $ �&% �<� " . However, instead of computing in each$ �)%8�E� " , the number of length-

�
accepting paths from state

2The ? -transitions in
�

are assumed to be eliminated.

Algorithm COUNTSTRINGS
� ��� � �

Input:
�

is an NFA, � is a length parameter, �@�A� .
Output: Counts B of accepting strings of length less than or equal

to � for each state in
�

.
1) for each state

�DC �
do B � ����E � � 
 E

;
2) for each accepting state

�FC �
do B � ���GE � � 
 � ;

3) for 
H� 
 � to � do
4) for each state

�DC �
do

5) B � ��� 
 � � 
 E
;

6) for each symbol � such that there is a transition out of
�

on � do
7) Let � � ��I>I>I"� �KJ be the resulting states for transitions out of

�
on symbol � ;

8) B � ��� 
 � � 
LB � ��� 
 ��M B � � � � 
.N � � ;
9) for OP� 
�Q to R do
10) Let S be a random sample of


 ��� � � ��� �UT � (generated by
repeatedly invoking GENRANDOMSTRING (

��� �<T � 
VN � )
a fixed number of times);

11) B � ��� 
 � � 
LB � ��� 
 �>M B � �UT � 
VN � �%W�X Y � �UZ\[ +.-]�^ ->_ 4 +.- �U`a� � ] �b� XX Y�X ;
12) return B � � ;

Figure 3: Algorithm for Computing Approximate Count of."! �9 #"
.%

, the algorithm adjusts this total count of accepting paths
by eliminating duplicate paths (recall that in an NFA, there
can be multiple accepting paths that correspond to the
same string). Thus, in our algorithm, each $ �)%8�E� " captures� . :<�9 &��% " �

, the number of length-
�

accepting strings in
 

from state
%
, more accurately.

When computing $ �&% �E��" in Steps 5–11, Algo-
rithm COUNTSTRINGS subtracts from the total count of
accepting paths

0 1 543J587654:8;>=�5 1�@ $ ��( �E�"� - "
(due to the dy-

namic programming relationship)3, the number of paths for
the same string that are counted multiple times. Thus, the
key problem is estimating the number of these duplicate
length-

�
accepting paths from

%
, which we solve as follows.

First, observe that it is not possible for two paths to be iden-
tical if they are due to transitions associated with different
symbols – thus, duplicate paths can only result due to tran-
sitions out of

%
on the same symbol. Consequently, we only

need to perform duplicate elimination from among the set
of paths whose first transitions have the same symbol.

Suppose that
( � �<( 
 �$#%#$# �E(

9 are the states due to transi-
tions out of

%
on symbol K . Note that each $ � (�c �<���- "

is an estimate of
� . : O � �9 &�<(Gc " �

which is the number
of distinct accepting paths of length

�F� -
from state(Gc

. However, for a pair of states
(�c8�<( �

, it is possible
that . : O �+�% &�E(Gc "

and . : O � �% &�E( �+"
have strings in com-

mon. The two paths from
( c

and
( �

for each common
string are identical, and with the two transitions from%

to
( c

and
( �

(on symbol K ), result in duplicate paths
from

%
. Our strategy for eliminating such duplicates is

to, for each
( c

, subtract from $ ��( c �E�#� - "
, the number of

strings in . : O � �% &�E( c "
that have already been counted ear-

lier in . : O � �% &�E( � " � . : O � �% &�E( 
 " �%#$#%# � . : O � �9 &�<( c O � " . In
the algorithm, we estimate the number of these strings by
generating a random sample

*
of . : O � �% &�E( c "

and scal-
ing $ ��(Gc �E� � - "

by the fraction of
*

not contained in� c O �� 9 � . : O �+�% &�E( �+"
. Thus, $ ��(�c8�<�8� - "�d 1 e O

;<f [ +.-]"^ - 2 4 +.- ; 2 5 7 ] @�@ 11 e%1
3Note that for an NFA

�
,
��� ��� � � is a set of states.



is a good estimate of the count of strings in . : O � �% &�E( c "
not previously counted in

� c O �� 9 � . : O � �9 &�<( � "
, and is added

to $ �)%8�E� " in Step 11.
We must point out that each string returned by GEN-

RANDOMSTRING (in Step 10) is based on the previously
computed counts $ �%" which only estimate the number of
accepting strings. Thus, the sample

*
may not be a uniform

random sample. Further, GENRANDOMSTRING assumes
that

 
is a DFA and so it needs to be modified when

 
is an NFA. Details of the required modifications for NFAs
can be found in [6].

The overhead of generating the random sample
*

of
length-

����� - "
strings for states

(�� �<(I
 �$#%#$#��E(
9 increases the

time complexity of the dynamic programming algorithm by
a factor of  �  �

in the worst case, resulting in a worst-case
time complexity of

C �  
 �  �

 DFE>G6� � C � � �  �H� "

for the al-
gorithm. This is because

� �  and � � �  �
. Note that

the algorithm can also handle DFAs very efficiently and its
time complexity reduces to

C �  �  �IDFEMGJ� � C � � �  � � "
if
 

is a DFA. The reason for this is that for a DFA, � is always
1 and as a result, random samples

*
do not need to be gen-

erated.

4 Size Measures for Infinite Regular Lan-
guages

Estimating the size of a regular language . �% #"
is

much more difficult than computing
� . ! �9 #" �

since unlike."! �9 #"
, . �% #"

can be an infinite set. In this section, we
define two different measures that attempt to capture the
size of infinite regular languages. We note that the tech-
niques presented here have applications beyond indexing
REs and can also be used for estimating the selectivities of
REs, clustering REs, etc.

4.1 Definitions

Before we proceed to define our measures for the size of. �9 #"
, we identify certain desirable properties for such

measures. First, we note that it does not make sense to
actually count the number of strings in an infinite regular
language. However, we do know that while it is impossi-
ble to assign a precise integer size to an infinite language,
not all infinite languages are equal with respect to size. For
example, the language for RE

��� � � "
� is larger than the lan-

guage for
� ��� � ��"

� (since the latter is a proper subset of the
former). Thus, we would like to define a measure for the
size of a language that reflects our intuition of the “larger
than” relationship between languages. We denote this mea-
sure of the size of . �% #"

by
� . �9 #" �

.
We can formalize our intuition of the “larger than” rela-

tionship between regular languages as follows.

Definition 4.1: For a pair of automata
 : �! c

, we say
that . �9 : " is larger than . �% c "

iff there exists a posi-
tive integer , such that for all

3 � , ,
0 �
9
9 � � . 9

�9 ;:9" ���0 �
9
9 � � . 9

�9 c " �
.

(a) M 1

(b) M2

d d

a , b , c

d

a , b b , c

d d d

b , c

Figure 4: Examples of Automata.

The various definitions for measure
� . �9 #" �

of the size of. �9 #"
that we present in the following subsections attempt

to capture this “larger than” relationship. Specifically, for
a pair of automata

 :<�! c
, if . �% ;:9" is larger than . �9 c "

,
then

� . �% ;:9" ��� � . �% c " �
.

4.2 Max-Count Measure

An obvious measure for the size of a regular language. �9 #"
is to count . �% #"

up to some maximum length � ,
i.e.,

� . �% #" � / � . � �% #" ��� � . 
8�9 #" ���
� � �

� � .
	 �9 #" �
.

Clearly, the larger we choose � to be, the more effective
we can expect the Max-Count measure to be at reflecting
the larger than relationship. However, for very large values
of � , the Max-Count measure may not be practical. Thus,
a good compromise is to set � to be equal to or slightly
greater than

�  �
. This ensures that strings due to all accept-

ing states and traversing a fair proportion of paths/cycles in 
are counted in

� . �9 #" �
. This measure is particularly

useful for applications where the maximum length of the
query strings is known and its value is not too large. For
such cases, � can be set to the maximum query length.

4.3 Minimum Description Length (MDL) Based Mea-
sure

For applications where information about the maximum
length of the query strings is not known apriori, using the
Max-Count measure can be problematic due to its sensitiv-
ity to the maximum length parameter value � .

Example 4.2: Consider the two automata
 �

and
 �


in
Figure 4. Even though

� . ! �% � " �
is greater than

� . ! �% 

 " �

for small values of  , . �9 

 " is larger than . �9 � " since� . ! �% 

 " �
grows much faster than

� . ! �% 	��" �
as  increases.

In fact, one can show that
� . !���
 �9 ��" ��/ �  � - "��  �� " � ; ! O � @ and

� ."!���
 �9 
 " � /�� ! for  � *
. The crossover

point for
� . �9 � " �

and
� . �% 
 " �

using the Max-Count mea-
sure occurs for a maximum length of � / -��

, that is,0 	
9
9 � � . 9

�9 
 " ��� 0 	
9
9 � � . 9

�% � " �
for � � -��

. Thus, if
the value of � for the Max-Count measure is set to be less
than

-��
, then . �% 	� " would be considered, incorrectly, to

be larger than . �% 

 " .
To obtain a more robust measure of the size of infinite

languages, we present an alternate metric that attempts to
address some of the shortcomings of the Max-Count mea-
sure and is based on using Rissanen’s Minimum Descrip-



tion Length (MDL) principle [20]. The MDL principle es-
sentially provides an information-theoretic definition of the
optimal “theory/model” that can be inferred from a set of
data examples; and it has been applied in a variety of prob-
lems (e.g., constructing decision trees [19], learning com-
mon patterns in a set of strings [18], inferring DTDs from
a collection of XML data [13]). An important observa-
tion made in [13] is that for two given REs $ : and $ c , if$ : defines a larger language than $ c (i.e., $ : is less pre-
cise than $ c with respect to the same collection of input
data sequences), then the cost of encoding an input data se-
quence using $ : is likely to be higher than using $ c . This
observation is consistent with information theory since, in
general, more bits are needed to specify an item that comes
from a larger collection of items.

Our use of the MDL principle to define a measure of the
size of a regular language is also inspired by a similar ob-
servation and is based on the following intuition: Given two
DFAs

 :
and

 c
, if . �% :%" is larger than . �9 c "

, then the
per-symbol-cost of an MDL-based encoding of a random
string in . �9 : " using

 :
is very likely to be higher than

that of a string in . �% c "
using

 c
. The per-symbol-cost

of encoding a string � A . �% #"
is essentially the ratio of

the cost of an MDL-based encoding of � using
 

(defined
below) to the length of � . Therefore, a reasonable measure
for the size of a regular language . �9 #"

is the expected
per-symbol-cost of an MDL-based encoding for a random
sample of strings in . �9 #"

. Let -���� �9 &� � " denote the
cost of an MDL-based encoding of a string � A . �% #"

us-
ing

 
and let

*
be a random sample of . �% #"

. Then, the
MDL-based measure for the size of . �% #"

is as follows4.

� 
 � � � � 
 �� S ������ Y
	�

� � ����� �� � � (1)

We next define the cost of an MDL-encoding of � us-
ing

 
. Suppose that � / � �\# � 
 # � � �

# � ! A . �9 #"
and% ' �?% � �$#%#$# �?% ! is the unique sequence of states visited by �

in
 

. Then, 	�
�� � ����� � 

	 � �
� ����� R���� � � � � � (2)

where each  : denotes the number of transitions out of
state

% :
, and ����� 
 �  :6" is the number of bits required to spec-

ify the transition out of state
% :

. Since the above formula-
tion is based on counting the number of transitions, to ob-
tain an accurate measure of the size of an infinite language,
it is important that

 
does not contain any “non-essential”

transitions (i.e., transitions that are not part of an accepting
path that involves at least one cycle5). Thus,

 
should be

a minimal-state DFA without any non-essential transitions.
The following example illustrates how the MDL-based en-
coding costs are computed.

Example 4.3: Consider the two automata
 �

and
 


in
Figure 4, and two length-

-�*
strings � � / � � � ��� � ��� � � A

4 � � � denotes the length string
�

.
5For example, in Figure 7(a), if the state labeled � does not have a  

self-loop transition, then both the  -transition from state Q to state � as
well as the ! -transition from state � to state " are non-essential. The re-
moval of such non-essential transitions from an automaton does not affect
the infiniteness of its language.

. �9 � " and � 
 / � ��� � � � � � � � A . �9 
 " . The per-symbol-
costs of encoding � � and � 
 using

 �
and

 

, respec-

tively, are as follows:	�

� � � � ��� � �� � � � 
 � E W R���� � �$#��� E % � I �'&'� E and

	�

� � � � ��� � �� � � � 
 � Q W E ��M � & W R��(� � ��) �%�� E % � I " E�E�E
The computed per-symbol-costs correctly indicate that. �9 
 " is larger than . �9 � " .

We still need to address the issue of generating the ran-
dom sample

*
of . �% #"

to encode. This can be carried
out by selecting two values � and * , both slightly greater
than

�  �
and for a desired random sample of size

3
, gen-

erating
� 1 2 4 ; 2 @ 1+-,'.0/ +.-1�^ , 1 2 1 ; 2 @ 1 random strings from each . :<�% #"

,

� �D� � � � * �Q-
(using Algorithm GENRANDOM-

STRING). By sampling from each . :<�9 #"
in proportion to

its count, we ensure that paths in the automaton that are tra-
versed more frequently by accepting strings have a greater
likelihood of being included in the sample

*
.

5 Algorithms for RE-Tree Operations

Now that we have robust measures for comparing the rela-
tive sizes of infinite regular languages, we are in a position
to present details of the three RE-tree operations for choos-
ing the best automaton, splitting a set of automata and com-
puting a generalized automaton (problems (P1), (P2) and
(P3) from Section 2.2). The algorithms for the RE-tree op-
erations presented in this section perform a number of stan-
dard operations on automata like union, intersection and
conversion of an NFA to a DFA. Efficient algorithms for
these automata operations can be found in [15]. Note that
while it is possible to compute the union/intersection of a
pair of automata

 : �  c
in time proportional to

�  : � �  c �
,

the worst-case time complexity of converting an NFA
 

to
a DFA can be exponential in

�  �
.

5.1 Algorithm CHOOSEBESTFA

From among the automata in - � , " contained in a node, , Algorithm CHOOSEBESTFA returns the automaton
 :

for which
� . �% : "�� . �% #" �

is maximum. For each
 : A

- � , " , the algorithm constructs the DFA
 �  :

and
computes

� . �9 +�  :%" �
using either the Max-Count or the

MDL metric from the previous section. The automaton
 :

for which the language . �9 �� :%"
is the largest is chosen

for inserting
 

into the RE-tree.

5.2 Algorithm SPLITFA

For a set of automata - / �  � �$#%#$# �  � �
, Algorithm

SPLITFA partitions - into - �
and - 


such that
� - � ���

G ,
� - � ��� G and

� . � - ��" �I� � . � - 
 " �
is minimum. Un-

fortunately, it can be shown that even if . �% : " for every : A - is finite, the problem of optimally splitting - is
NP-hard (reduction from clique). Thus, one can expect that
for infinite languages, the problem is even more difficult.



Algorithm SPLITFA
� 	 �

Input:
	

is a set of automata to be split.
Output: Two sets of automata

	 �
and

	 �
resulting from the split.

1) Let
� � �9� T C 	 be the pair of automata such that

� 
 � � � ��� T � �N � 
 � � � � � T � � is maximum;
2)
	 � � 
�� � ��� , 	 � � 
�� � T � ;

3)
	 � 
 	 N�� � � �9� T � ;

4) while (
	��
�� ) do

5) if (
� 	 � 
 � N � 	 � �

) then
6)

	 � � 
 	 � � 	
;

7) break;
8) if (

� 	 � 
 � N � 	 � �
) then

9)
	 � � 
 	 � � 	

;
10) break;
11) Let

� � C 	
be the automaton for which 	�

��� � 
 � 	 � � � � ��� � �N � 
 � 	 � � � �E� 
 � 	 � � � � ��� � � N � 
 � 	 � � � �

is minimum;
12) if (

� 
 � 	 ��� � � ��� � � N � 
 � 	 � � ��� � 
 � 	 � � � � ��� � � N� 
 � 	 � � �
) then

13)
	 � � 
 	 ��� � � ��� ;

14) else
15)

	 � � 
 	 � � � � ��� ;
16)

	 � 
 	 N�� � ��� ;
17) return (

	 ��� 	 �
);

Figure 5: Algorithm for Splitting a Set of Automata.

Theorem 5.1: Given finite sets of elements � � �%#$#$# � �J! , the
problem of partitioning them into two sets � � and � 
 (each
containing at least G elements) such that

� � ��� 4 5�� - � :6" � �
� � ��� 4 5�� 0 � :9" �

is minimum, is NP-hard.

Since the problem of computing the optimal partition-
ing of - is NP-hard, we resort to heuristics to generate
the two sets - �

and - 

. Figure 5 contains the steps of

the SPLITFA algorithm for splitting - into two compact
well-separated subsets. Algorithm SPLITFA is similar in
spirit to the Quadratic Split algorithm from [14] – how-
ever, instead of trying to minimize the area of MBRs, our
splitting algorithm attempts to reduce the size of regular
languages. The algorithm begins by picking as seeds (in
Step 1), the two automata from - whose languages have
large non-overlapping portions, and then greedily assigns
each remaining automaton

 :
in - to the set whose lan-

guage increases the least due to the addition of
 :

.
Note that Step 1 requires

C � � - �

 "

automata intersec-
tion, union and size measure computations to be performed,
one for each pair of automata in - . For efficiency pur-
poses, the algorithm caches DFAs for - �

and - 

as well

as
� . � - � " �

and
� . � - 
 " �

between successive iterations of
the while loop. Thus, in Step 11, the algorithm performs� � � - ��� � "

automata union and size measure computations
in the

� 7��
iteration of the while loop, two for each of the

remaining automata in - .

5.3 Algorithm GENERALIZEFA

Recall from Section 2.2 that the objective of the GENER-
ALIZEFA algorithm is to generate for a set of automata- , an automaton

 
with no more than F states such that. � - " = . �% #"

and
� . �9 #" �

is minimum. This problem
can be shown to be NP-hard by reducing the partition prob-
lem [12] to it.

Theorem 5.2: Given a set of automata - , the problem of

Algorithm GENERALIZEFA
� 	 � � �

Input:
	

is a set of automata to be generalized.� is maximum number of states in generalized automaton.
Output: The generalized automaton for

	
.

1) Compute DFA
�

for
� ` 4 ��� � �

2) while (
� �	��� � ) do

/*
� ��� 4 � � [ � is the resulting automaton when states

� � �G� T in�
are merged */

3) Let
� � �G� T be the pair of states in

�
for which

� 
 � � ��� 4 � � [ � � �
is minimum among all pairs of states in

�
;

4) Set
�

to be equal to the DFA for
� ��� 4 � � [ � ;

5) return
�

;

Figure 6: Algorithm for Generalizing a Set of Automata.
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Figure 7: Automaton Generalization Example.

computing a DFA
 

with no more than F states and for
which . � - " = . �% #"

and
� . �% #" �

is minimum, is NP-
hard.

The algorithm for generalizing a set of automata - is
shown in Figure 6. The algorithm greedily merges pairs
of states (that result in the smallest regular languages) in
the union automaton

 
until

�  � � F . Note that the au-
tomaton

 ;>= 4 5 = [ @ resulting from merging states
% :

and
% c

in 
may not be a DFA. Thus, if we want to compute accu-

rate counts and samples for . 9
�% ; = 4 5 = [ @ " , we may need to

convert
 ; =�4N5 = [ @ into a DFA first. However, an option with

lower overhead, if approximate counts and samples are ac-
ceptable, is to directly apply to

 ;>=�4N5 = [ @ , the counting and
sampling algorithms for NFAs described in Section 3. This
would avoid converting NFA

 ; =�4N5 = [ @ to a DFA, an oper-
ation which could be potentially expensive and could also
cause the number of states in the automaton to increase.

A further optimization is to not consider all pairs of
states

% : �?%�c
in
 

as candidates for merging in Step 3. One
heuristic is to consider as candidates only those state pairs% : �?%�c

that have similar incoming and outgoing transitions.
The rationale here is that merging such similar states is
more likely to result in automata with compact languages.

Example 5.3: Suppose we want to generalize the three au-
tomata for the REs

� � �
� ,
� �!�

� and
���

�
�
. The DFA for



the union of the three automata is depicted in Figure 7(a).
Suppose F / �

, that is, we would like the final general-
ized automaton to contain at most 3 states. We trace the
steps of Algorithm GENERALIZEFA on the union automa-
ton

 �
. The first pair of states merged by the algorithm

are states 3 and 6 since the language for the resulting au-
tomaton

 


in Figure 7(b) is

���
�
� �

�
� � �!�

� , which is smaller
than the resulting languages when other pairs of states are
merged. For instance, merging states 3 and 4 results in
the language

��� ��� � � "�� � � � "
�
" � � �

�
�
, while

���
�
� � �

�
� �!�

�
"

is the
language when states 2 and 5 are merged. In the next iter-
ation, states 2 and 5 are merged to yield automaton

 
 in
Figure 7(c) whose language is

���
�
� � �

�
� �!�

�
"
. And in the

final iteration, states 1 and 2 are merged, and the final au-
tomaton

 ��
in Figure 7(d) containing 3 states is returned

by the algorithm ( . �9 �� "
is
�

�
��� �

�
� �!�

�
"
).

5.4 Optimizations

The RE-tree operations CHOOSEBESTFA and SPLITFA
described in previous subsections required frequent com-
putations of

� . �9 ;:��  c " �
and

� . �9 ;: �  c " �
to be per-

formed for pairs of automata
 :<�! c

. These computa-
tions can adversely affect RE-tree performance since con-
struction of the intersection and union automaton

 
can

be expensive. Further, the final automaton
 

may have
many more states than the two initial automata

 :
and c

. This could be a problem since computing
� . �9 #" �

using any of the size measures from Section 4 requires� . 9
�% #" �

for a range of � values to be calculated using Al-
gorithm COUNTSTRINGS. (The MDL metric also requires
random samples for each . 9

�% #"
to be generated).

In this subsection, we show how sampling can be used
to speed up the performance of the RE-tree operation
CHOOSEBESTFA. Due to lack of space, we defer details
of our optimization techniques for SPLITFA to [6].

The CHOOSEBESTFA algorithm requires
� . �9 �  :6" �

to be estimated, where
 

is the automaton being inserted
into the tree and

 :
is an automaton in the current RE-tree

node. In the following, we show how a random sample of. 9
�9 #"

and knowledge of
� . 9
�% #" �

for a range of � values
can be used to compute

� . �% �  : " �
very fast for the two

size measures proposed earlier. Thus, for an automaton
 

being inserted into the RE-tree index, our algorithm only
requires us to generate counts and samples for . 9

�% #"
for

specific values of � . We make use of the following two
theorems (see [8]) that suggest how counts and samples for
the intersection of two sets � � and � 
 can be generated
using the count and sample information for one of them.

Theorem 5.4: Suppose
* �

is a uniform random sample of
set � � . Then

1 e -�� � 0 1�1 � - 11 e - 1 is an unbiased estimator of the size
of � � � � 
 .
Theorem 5.5: Suppose

* �
is a uniform random sample of

set � � . Then
* ��� � 
 is a uniform random sample of � ��� � 


with size
� * � � � 
 �

.

Max-Count. For the Max-Count measure, we need
to compute

� . 9
�% �  ;:%" �

for � values in the range�M-8� ��� . We assume that for these � values, we have
already computed

� . 9
�9 #" �

and �. 9
�% #"

, a uniform ran-
dom sample of . 9

�9 #"
. From Theorem 5.4, it follows

that
1	�2 1 ; 2 @ � 2 ; 2 4 @ 1�1 2 1 ; 2 @ 11	�2 1 ; 2 @ 1 is an unbiased estimate of

� . 9
�% �  ;:%" �

. Here �. 9
�9 #"#� . �% :%" can be computed

efficiently by simply checking for each string in sample
�. 9
�9 #"

, if it is accepted by
 :

. Thus, with our sampling
approach, we only need to compute counts and samples
for . 9

�9 #"
(the automaton being inserted) once at the

beginning. There is no need to either construct the
automaton for each

 �  :
or count . 9

�9 �  ;:9"
us-

ing the dynamic programming algorithm COUNTSTRINGS.
MDL. For computing

� . �9 .�  : " �
using the MDL mea-

sure, we need to generate random samples of . 9
�9 +�  : "

for � � � � � � * � -
. Suppose that �. 9

�% #"
de-

notes the random sample of . 9
�9 #"

. Then, due to Theo-
rem 5.5, �. 9

�% #" � . �9 : " is a uniform random sample of. 9
�9 �	 : "

. Thus, using our sampling-based approach,
sample �. 9

�9 #"
needs to be computed only once in the be-

ginning. In addition, we also need to construct the inter-
section automaton for each

 .�> :
to encode the strings

in the sample. However, we completely eliminate the need
to count . 9

�9 �  ;:%"
using Algorithm COUNTSTRINGS

or generate new samples for . 9
�9 �  : "

using Algo-
rithm GENRANDOMSTRING.

6 Experimental Evaluation

To determine the effectiveness of the RE-tree, we compare
its performance against the sequential file approach which
stores the REs in a flat file and searches the entire file se-
quentially for each search query. As we noted in Section 1,
we are not aware of any disk-based indexing method for in-
dexing REs (in their full generality). Our experimental re-
sults (based on synthetic data sets) indicate that the RE-tree
approach offers a significant performance improvement (by
factors ranging from 2 to

�
) over the sequential search ap-

proach.
Data Sets: Each synthetic data set comprises of clus-

ters of similar REs that are generated using a synthetic RE
generator, where the number of clusters and the size of
each cluster are controlled by the input parameters

� !�

�
and

� = :����
, respectively. The REs in each cluster are simi-

lar in terms of both their content (i.e., symbol distribution)
as well as their structure (i.e., parse tree). Content-wise,
each cluster is associated with some subset of the alphabetC��0= C

, referred to as its hot alphabet, such that each RE
symbol is drawn from

C��
with a probability of � and drawn

from
�9C � C���"

with a probability of
�I- � � " . The parame-

ter � applies to all the clusters and is referred to as the hot
probability. Each cluster is mapped to its hot alphabet as
follows: First, the alphabet

C
is arbitrarily partitioned into �� disjoint subsets

C / � !��: 9 � C :
such that each subset

C :



consists of
1 3 1!�� symbols6, where  � is another input param-

eter. Each cluster is then randomly mapped to one of the � subsets as its hot alphabet.
In terms of structural similarity, each cluster of simi-

lar REs is generated by first randomly generating a seed
RE $ : and then using $ : to derive the other REs in the
cluster by making a random modification to the parse tree
of $ : . Note that in a parse tree for an RE, the leaf nodes
correspond to symbols in

C
while the internal nodes corre-

spond to one of the three operators: union, concatenation,
or kleene star. The structure of each seed RE is controlled
by two parameters *�� and * � such that each seed RE is of
the form $ : /�� �,# � 
,#

� � �
# � ! , where  is a random inte-

ger between
-

and *�� and each
� c

has one of the follow-
ing four forms: (1)

���4� � ��
 �
� � �

� � ! [ " , (2)
��� � # � 
,#

� � �
# � ! [ " ,

(3)
��� � � � 
 �

� � �
� � ! [ " � , or (4)

��� �,# � 
 #
� � �

# � ! [ " � ; where  c is
a random integer between

-
and * � . A similar RE is de-

rived from a seed RE $ : by adding a new internal node to
its parse tree (corresponding to either the kleene star oper-
ator or union operator) at a randomly selected location in
the parse tree. For instance, when adding a new union op-
erator, one of the operands of the union operator is one of
the existing nodes in the parse tree while the other operand
is a new leaf node corresponding to a randomly generated
symbol.

Queries: For each data set, we generate a set of
-(*4*�*

random queries, where each query � A C
� is generated

as follows. First, randomly select an RE $ from the data
set, and randomly generate an integer  between � and

-(*
.

Next, generate a random length-  string � that matches $ ;
if no such string exists, we repeat the generation process
with another randomly chosen pair of values for $ and  .

Algorithms: For the sequential file approach, a file of
automata is created for each data set by packing the col-
lection of automata into as few pages as possible. To
find matching REs for a query string � requires sequen-
tially checking against each automaton in the file. For the
RE-tree approach, our implementation is based on the al-
gorithms presented in Sections 2 through 5. We use the
MDL measure for comparing sizes of regular languages
since in our experiments, we found it to be more effective
than the Max-Count metric. The RE-tree operations for
the most part are implemented as described in Section 5;
however, our implementation does not incorporate any of
the sampling-based optimizations discussed in Section 5.4.
We intend to conduct further experiments with these opti-
mization techniques on larger data sets as part of our future
work.

The experiments were conducted on a � *4* MHz In-
tel Pentium III machine with 512 MB memory running
FreeBSD 	 #M- . Both the sequential file and RE-tree methods
were implemented as Unix files on a

-(*
GB SAMSUNG-

SV1022D disk. For each query and each method, we mea-
sured both the evaluation time (including both CPU and
I/O times) as well as the number of automaton comparisons
(i.e., the number of automata that were checked against the

6For simplicity, assume that
� � �

is a multiple of ��
 .

Param Meaning Value�
Page Size (in KB) 4� � �
Size of alphabet 20
��
Max. number of first-level expressions
(per RE) 3
��
Max number of second-level symbols
(per first-level expression) 3� 
 Number of alphabet subsets 5� Maximum number of states for bounding
automata 5, 10� 	���� Number of RE clusters 50, 100� � ����� Size of RE cluster 25, 50�
Size of data set given by � 	���� W � � ����� 1250, 5000� Probability that a symbol belongs to the
“hot” alphabet subset 0.5, 0.75, 1.0

Table 2: Experimental Parameters and Values.
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query). Each query was run
-(*

times (for each method) to
compute its average measurement values.

6.1 Experimental Results
This section presents experimental results that compare the
performance of the two approaches by varying three main
parameters: (1) F , the maximum size of a bounding au-
tomaton; (2) � , the hot probability; and (3) the size of the
data set (number of REs) given by ) / � ! 
 � ) � = :����

. Ta-
ble 2 summarizes the values of the parameters used in our
experiments.

The performance results are presented in terms of two
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ratios,
�

�! #"
; ! @

�

$'&
; ! @ and

�

�! #"
; ! @

�

$'&
; ! @ ; where , = � 7 �  " ( , e 7 �  " ) is

the average number of automaton comparisons incurred by
the sequential (RE-tree) approach for queries with a result
size (that is, number of matching REs) of  , and

� = � 7 �  "
(

� e 7 �  " ) is the average evaluation time incurred by the se-
quential (RE-tree) approach for queries with a result size
of  . Note that the number of automaton comparisons in-
curred by the sequential file approach , = � 7 �  " is always
equal to ) , the size of the data set.

Figure 8 shows the performance results as F is varied.
The graphs indicate that RE-trees outperform the sequen-
tial file approach by up to a factor of

�
and

�
, respectively,

for the number of automaton comparisons and search time.
Our results indicate that both the number of automaton
comparisons (Figure 8(a)) and running time (Figure 8(b))
improve with larger values of F . This is because as F
increases, the precision of the bounding automata gener-
ally becomes higher, thereby resulting in better pruning
of “false-drops” (i.e., path traversals that do not lead to
any qualifying REs) and hence fewer number of automa-
ton comparisons and index page accesses.

Figure 9 depicts the performance results as � is varied.
Since the similarity of the REs in each cluster becomes
higher with a larger value of � , the RE-tree approach is able
to improve its filtering (with tigher bounding automata)
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.

thereby resulting in less false drops and hence improved
query evaluation. Therefore, the performance of RE-trees
improves as � increases.

Note that for the experimental results in Figures 8 and
9, the average evaluation time incurred by the sequential
file approach is about

� � *4* ms, and the space requirement
of the RE-tree approach is about

-�# � times more than that
of the sequential file approach.

Figure 10 illustrates the performance results as ) is var-
ied. We note that the performance gain of RE-trees in-
creases with a larger value of ) .

7 Related Work

Although several indexing methods have been proposed to
speed up the search of textual data with REs (e.g., bit-
parallel implementation of NFA [22] and suffix trees [2]),
there is very little work on the reverse indexing problem
involving the retrieval of REs that match an input string.
Besides the recent main-memory indexes proposed for fil-
tering XML documents using XPath expressions [1, 5, 11],
which is a specialized class of REs, we are not aware of any
work on (disk-based) indexes for general REs.

Recently, several indexing methods [1, 5, 11] have been
proposed for filtering incoming XML documents against
a collection of user profiles expressed as XPath queries,



where each XPath query specifies patterns pertaining to
paths in the document graph. Our work differs from these
indexing schemes in two important aspects. First, the class
of REs supported by XPath queries is more specialized as
both the union and kleene operators are to be used only
with the entire alphabet (i.e., as

C
and

C
� , respectively).

Consequently, the associated finite automata are simpler as
there are no cycles (besides self-loops) and each state has at
most two outgoing transitions: a self-loop transition to it-
self and a transition to one other state (labelled with either
a single letter of the alphabet or the entire alphabet). This
is in contrast to our work that deals with REs in their full
generality. Second, as opposed to our hierarchical disk-
based index approach, the existing XPath-based indexing
schemes are designed for main-memory resident data.

A related problem is that of indexing sets of objects,
which has been addressed in various contexts, including
document retrieval (where each document is characterized
by a set of keywords) [3] and evaluation of set predicates
(involving set-valued attributes) [16]. Inverted lists and sig-
nature files are two well-known techniques that have been
developed for this problem [3]. However, since these meth-
ods are targeted for indexing finite sets of objects, they are
not appropriate for indexing infinite regular languages.

8 Conclusions

In this paper, we presented the RE-tree, which is a novel
index structure for performing fast retrievals of REs that
match a given input string. In order to overcome the chal-
lenge of indexing the infinite regular sets (corresponding
to REs) with no well-defined notion of spatial locality, we
developed novel measures for comparing the relative sizes
of infinite regular languages; these range from “rate-of-
growth” estimates to encoding costs of sample strings us-
ing the corresponding REs. We also proposed innovative
solutions for the various RE-tree operations, including the
effective splitting of RE-tree nodes and computing a “tight”
bounding RE (under a space constraint) for a collection of
REs. Finally, we showed how sampling-based approxima-
tion algorithms can be used to significantly speed up the
performance of RE-tree operations.

Our experimental results with synthetic data sets clearly
demonstrate that the RE-tree index is significantly more
effective than performing a sequential search for match-
ing REs, and in a number of cases, outperforms sequential
search by factors as high as

�
. As part of our future work,

we are conducting more experiments with the sampling-
based approximation algorithms on larger data sets to fur-
ther explore their tradeoffs and fine-tune the design of RE-
trees. Another direction that we are actively investigating
is the application of the counting, sampling and size esti-
mation techniques for regular languages that we developed
in the paper to other problem domains like selectivity esti-
mation of REs, clustering REs, etc.
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