
Icon Programming Language Handbook

Thomas W. Christopher

Copyright © 1996. Thomas W. Christopher iii

Icon Programming Language
Handbook

Thomas W. Christopher

Icon Programming Language Handbook

iv Copyright © 1996. Thomas W. Christopher

Beta edition.

Copyright © 1996. Thomas W. Christopher

Published by Dr. Thomas W. Christopher, Tools of Computing LLC, P. O. Box 6335, Evanston IL 60204-6335.

Acknowledgment

I wish to thank Patricia Guilbeault for her technical editing of this document.

Todd Proebsting found several errors in the text and suggested improvements.

Printed in the United States of America.

Table of Contents

Copyright © 1996. Thomas W. Christopher v

CONTENTS

 List of Figures. xi

 List of Tables . xiii

 Preface. xv

Chapter 1 About Icon . 17

Chapter 2 Basics . 21
2.1 Compiling and running an Icon program 21
2.2 Hello, world . 21
2.3 Declarations . 23
2.4 Exiting a program . 24
2.5 Elementary numbers . 25
 2.5.1 Integer literals . 25
 2.5.2 Selected integer operators . 25
2.6 Elementary strings . 25
 2.6.1 String literals . 25
 2.6.2 Selected string operators . 26
 2.6.3 Subscripting strings. 26
 2.6.4 Comparison operators . 28
2.7 Elementary control constructs 28
 2.7.1 If expressions . 28
 2.7.2 While expressions . 28
 2.7.3 Expression sequences . 29
2.8 Elementary generators . 29
2.9 Elementary lists. 29
 2.9.1 List creation: list(n). 29
 2.9.2 Subscripting lists. 30
 2.9.3 List creation: [...]. 30
 2.9.4 List creation: list(n,x) . 30
 2.9.5 Selected list operators . 30
 2.9.6 Differences between lists and strings 32
 2.9.7 Procedure main’s parameter . 33
2.10 Records . 33

Chapter 3 Generators . 35
3.1 Expressions are generators . 35
3.2 Expression evaluation order . 35

Icon Programming Language Handbook

vi Copyright © 1996. Thomas W. Christopher

3.3 Every. 36
3.4 To . 36
3.5 To-by. 37
3.6 Element generation: !e . 37
3.7 Backtracking . 37
3.8 Failure . 38
3.9 Binary operators containing generators 38
3.10 Arithmetic relational operators 38
3.11 Conjunction: e1 & e2 . 39
3.12 Null and non-null tests: / x and \ x 39
3.13 Coevaluation . 40
3.14 Alternation: e1 | e2 . 41
3.15 Sequence generation: seq(...) 42
3.16 Repeated alternation: | e . 42
3.17 Limitation: e1 \ e2. 43
3.18 Idiom: generate and test . 44

Chapter 4 Control Constructs . 45
4.1 {e1; e2; ; en } . 45
4.2 every do. 45
4.3 if then else. 46
4.4 idiom : goal directed evaluation 46
4.5 case of { } . 47
4.6 while do. 48
4.7 not . 49
4.8 idiom: write "all do" as "not any don’t" 49
4.9 until do . 50
4.10 repeat. 50
4.11 break . 51
4.12 next . 51

Chapter 5 Procedures . 53
5.1 Procedure calls . 53
5.2 Procedure declarations . 54
5.3 Idiom: default values for parameters 55
5.4 Return . 55
5.5 Fail . 56
5.6 Suspend. 56
5.7 Initial . 57
5.8 String invocation. 58
5.9 Applying a procedure to a list. 58
5.10 Functions that apply to procedures 59

Chapter 6 Strings and Character Sets 61
6.1 String literals. 61
6.2 Positions in strings . 62

Table of Contents

Copyright © 1996. Thomas W. Christopher vii

6.3 Subscripting . 62
6.4 Sectioning: subscripting ranges 63
6.5 String operators. 64
6.6 String editing and conversion functions 65
6.7 Idiom: map . 67
6.8 Character sets: cset . 68
 6.8.1 Character set literals . 68
 6.8.2 Character-set valued keywords 68
 6.8.3 Character set operators . 68
6.9 String scanning functions . 69
6.10 Automatic conversions . 72
6.11 Examples of strings. 72
 6.11.1 Finding the rightmost occurrence 72
 6.11.2 Squeezing whitespace . 72
 6.11.3 Converting two hex digits to a character 73
 6.11.4 Converting a character to two hex digits 73
 6.11.5 Removing backspaces. 73
 6.11.6 Generating character set tests for C 74
 6.11.7 Generate identifiers . 74
 6.11.8 Primes sieve . 75
6.12 Scanning Strings . 75
 6.12.1 Scanning . 75
 6.12.2 Functions tab and move . 76
 6.12.3 String scanning functions revisited. 76
 6.12.4 Matching a string, = e . 77
 6.12.5 Scanning with assignment, ?:= 78
 6.12.6 Testing &pos, pos(i) . 78
 6.12.7 Example . 78
6.13 Regular expressions . 78
 6.13.1 findre . 79
 6.13.2 regexpr . 80

Chapter 7 Arithmetic . 83
7.1 Numeric literals. 83
7.2 Operators. 84
7.3 Large integers . 85
7.4 Conversion functions . 86
7.5 Bitwise operations on integers 86
7.6 Numeric functions. 87
7.7 Complex . 89
7.8 Rational numbers . 89
7.9 Random numbers . 90
7.10 Matrices . 91

Chapter 8 I/O . 93
8.1 File I/O . 93
8.2 File names and paths. 98

Icon Programming Language Handbook

viii Copyright © 1996. Thomas W. Christopher

8.3 Directories. 102
8.4 Character-based, interactive I/O 102

Chapter 9 Lists . 105
9.1 Creation: list(), [...] . 105
9.2 Positions subscripting and subranges 105
9.3 Operators. 106
9.4 Stacks and queues . 107
9.5 Other list functions . 109

Chapter 10 Tables. 111
10.1 Creation, lookup and assignment 111
10.2 Initial value &null, \ and / idioms 111
10.3 Other initial values . 112
10.4 Sort . 112
10.5 Generating keys and values 113
10.6 Functions. 113
10.7 Table operators . 114
10.8 Example: word count . 114

Chapter 11 Sets . 117
11.1 Creation. 117
11.2 Operators. 117
11.3 Functions. 118
11.4 Idiom: to-do sets . 119
11.5 Examples using sets . 119
 11.5.1 Cross reference . 119
 11.5.2 Cross reference without reserved words 119
 11.5.3 Eight queens problem . 120
 11.5.4 Primes sieve using sets . 121

Chapter 12 Records . 123
12.1 Record declarations. 123
12.2 Creation. 123
12.3 Field access r.f . 123
12.4 Generating fields: ! (unary). 123
12.5 Subscripting records: r["f"] r[i]. 123
12.6 Applying a procedure to the fields: ! (binary) 124
12.7 Record operators . 124
12.8 Record functions . 125

Chapter 13 Data Types and Conversions 127
13.1 Variables and Values . 127
13.2 Operations On Arbitrary Types 128
13.3 Built-in conversions . 129
13.4 Translating structures to strings 130

Table of Contents

Copyright © 1996. Thomas W. Christopher ix

Chapter 14 Debugging . 133
14.1 Basic debugging . 133
14.2 Monitoring storage . 138

Chapter 15 Writing systems. 141
15.1 Translator commands . 141
 15.1.1 Translator and compiler . 141
 15.1.2 Translating multiple files . 142
 15.1.3 Command-line arguments. 142
15.2 Global name space . 144
15.3 The preprocessor. 144
15.4 Environment Inquiries . 145

Chapter 16 Co-expressions . 147
16.1 What are co-expressions? . 147
16.2 Creation: create e . 147
16.3 Activating a co-expression 147
16.4 States of a co-expression. 148
16.5 Getting the number of values generated 148
16.6 Refreshed copies . 148
16.7 Symmetric activation: val @ c 149
16.8 Co-expression keywords. 149
16.9 p { ... }. 149

Chapter 17 Windows and Graphics 151
17.1 Windows . 151
17.2 Graphics . 153
 17.2.1 Co-ordinates and angles . 153
17.3 Lines . 153
 17.3.1 Line-drawing functions. 153
 17.3.2 Examples of line drawings . 156
17.4 Filled areas . 159
 17.4.1 Basic area-filling functions. 159
 17.4.2 Fill style . 160
 17.4.3 Patterns . 160
 17.4.4 Bi-level images . 161
 17.4.5 Fill attributes . 162
 17.4.6 Example of filled areas . 162
17.5 Text . 164
17.6 Colors . 168
 17.6.1 Color specifications and names 168
 17.6.2 Color correction . 171
 17.6.3 Palettes, images. 172
 17.6.4 Mutable colors . 176
17.7 Pixel rectangles, moving, saving, restoring 176
17.8 Events . 177
17.9 Canvases and graphics contexts 181

Icon Programming Language Handbook

x Copyright © 1996. Thomas W. Christopher

17.10 Synchronizing window output 183
17.11 Dialogs . 183
17.12 Table of Attributes . 184

Chapter 18 Functions and keywords 189

Chapter 19 Syntax . 219
19.1 Grammar for Icon . 219
19.2 Table of operators . 223

Chapter 20 Bibliography . 225

List of Figures

Copyright © 1996. Thomas W. Christopher xi

List of Figures

Figure 1 Hello world program . 21
Figure 2 Expression sequences. 22
Figure 3 Typelessness . 22
Figure 4 Local declarations . 23
Figure 5 Uninitialized variables. 23
Figure 6 Write 1 2 3 4 5 . 36
Figure 7 Figure 2 Right triangles 44
Figure 8 Find a right triangle . 46
Figure 9 File copy . 48
Figure 10 Define bit positions . 49
Figure 11 Write Fibonacci numbers using until 50
Figure 12 Fibonacci using repeat 51
Figure 13 Bit positions in octal. 55
Figure 14 Maximum of two numbers 56
Figure 15 Demonstration of suspend 57
Figure 16 Using initial . 57
Figure 17 Find last occurrence. 72
Figure 18 Squeezing whitespace 73
Figure 19 Converting two hex digits to a character 73
Figure 20 Converting a character to two hex digits 73
Figure 21 Removing backspaces 73
Figure 22 Generating character set tests for C. 74
Figure 23 ident: Generating identifiers 75
Figure 24 Primes sieve using strings 75
Figure 25 idents with ? and tab. 78
Figure 26 Prime sieve using bits 87
Figure 27 Character positions . 106
Figure 28 Stack and queue operations on a list. 108
Figure 29 Word: Generating the words in a file 115
Figure 30 Count occurrences of words in the input. . . . 115
Figure 31 Cross reference listing 119
Figure 32 Cross references without reserved words 119
Figure 33 The eight queens problem 120
Figure 34 Built-in data conversions.. 130
Figure 35 Icon translator and compiler. 141
Figure 36 Refreshed copies of co-expressions. 149
Figure 37 Drawing lines. . 156

Icon Programming Language Handbook

xii Copyright © 1996. Thomas W. Christopher

Figure 38 Lines drawn by Figure 37. 157
Figure 39 Closed figures. . 157
Figure 40 Draw a spiral. 157
Figure 41 Spiral—the effects of angles. 158
Figure 42 Angles in DrawCircle and DrawArc. 158
Figure 43 Some filled figures . 160
Figure 44 Fill patterns. 161
Figure 46 Code for beveled figures. 162
Figure 45 Beveled figures. 163
Figure 47 Fonts. . 167
Figure 48 Font attributes. 168
Figure 49 Moving sign.. 168
Figure 50 Grammar for color names. 170
Figure 51 Show events.. 178
Figure 52 Code to draw circles. 179

List of Tables

Copyright © 1996. Thomas W. Christopher xiii

List of Tables

Table 1 Icon data types . 18
Table 2 Declarations . 23
Table 3 Exiting a program . 24
Table 4 Arithmetic operators . 25
Table 5 Comparison operators . 28
Table 6 Testing for &null . 40
Table 7 Function seq() . 42
Table 8 Examples of |e . 42
Table 9 Examples of e1\e2 . 43
Table 10 Procedures that apply to procedures 59
Table 11 Representation of special characters 61
Table 12 String operators . 64
Table 13 String editing and conversion functions 65
Table 14 Keywords with cset values 68
Table 15 Character set operators 69
Table 16 String scanning functions 70
Table 17 String scanning, revisited. 77
Table 18 Regular expression special characters 79
Table 19 Procedures in regexpr.icn. 80
Table 20 Regexp special characters. 80
Table 21 Arithmetic operators . 84
Table 22 Built-in number conversion 86
Table 23 Other conversions from real to integer 86
Table 24 Bitwise operators . 87
Table 25 Trig. and numeric functions and keywords 88
Table 26 Complex arithmetic procedures. 89
Table 27 Rational arithmetic procedures. 90
Table 28 The random number generator, ? n. 90
Table 29 Random number packages in the IPL. 91
Table 30 Operations and functions on files 94
Table 31 File names and paths: IPL procedures. 99
Table 32 Directory and environment procedures 102
Table 33 Interactive character I/O functions 103
Table 34 List creation . 105
Table 35 List operators . 106
Table 36 Lists as doubly ended queues 107
Table 37 Other built-in list functions 109

Icon Programming Language Handbook

xiv Copyright © 1996. Thomas W. Christopher

Table 38 Functions that apply to tables 113
Table 39 Table operators . 114
Table 40 Set operators . 117
Table 41 Functions that apply to sets 118
Table 42 Operators that apply to records 124
Table 43 Functions that apply to records 125
Table 44 Operations on variables 128
Table 45 Operations on arbitrary types. 128
Table 46 Encoding and decoding data structures. 131
Table 47 Debugging functions and keywords 134
Table 48 Run-time errors . 135
Table 49 Storage management. 138
Table 50 . Command line flags for icont. 143
Table 51 Preprocessor directives. 144
Table 52 Environment inquiries 145
Table 53 Co-expression keywords.. 149
Table 54 Common window attributes for WOpen.. 151
Table 55 Functions to open and close windows. 152
Table 56 Basic line-drawing functions. 154
Table 57 Attributes for line drawing. 155
Table 58 Functions for filling areas. 159
Table 59 Fill-related attributes.. 162
Table 60 Text-related window functions. 164
Table 61 Window attributes related to text. 165
Table 62 Built-in font families . 167
Table 63 The built-in hues. 169
Table 64 Lightness and saturation. 170
Table 65 Color palette c1.. 172
Table 66 Color palettes . 174
Table 67 Palette functions. 174
Table 68 Mutable color functions. 176
Table 69 Pixel rectangle functions.. 177
Table 70 Event keywords and functions. 179
Table 71 The canvas attribute. . 181
Table 72. Canvas manipulation functions. 182
Table 73 Functions to flush the output buffer. 183
Table 74 Functions for standard dialogs. 183
Table 75 Summary of functions and keywords. 189

Copyright © 1996. Thomas W. Christopher xv

 Preface

This document is designed to serve two purposes: to introduce to Icon and to be
a reference for Icon.

As an introduction to programming in Icon, the handbook assumes you already
know how to program in some other procedural programming language—C or
Pascal, say. Some of the examples assume you know as much mathematics as
the average college sophomore. Chapter 2 on page 21, presents features of the
Icon programming Language equivalent to those of other programming lan-
guages.

To learn Icon, we suggest you read the Basics chapter and then read through the
text and examples in the rest of the handbook.

Look things up in the tables as you need to, but don’t get bogged down in them.
The tables are there for reference. Just glance over them; don’t bother to read
them thoroughly when you are first learning the language.

As a reference on Icon, this may be the only document you have, so we include
copious tables of operators, functions, and keywords. The tables are placed
within discussions and examples of language features and language usage so
that all the information you need will be close at hand. Since some language fea-
tures fit into more than one topic, the tables have some overlapping material.

Near the end of the handbook we include tables of operators, functions, proce-
dures, and keywords so you can quickly look up the specifics of functions, etc.,
when you remember their names.

On a personal note, the author confesses that he is not a "detail person," so it
seems highly likely there will be some errors and omissions in this book. Please
look me up on the world wide web and send corrections and suggestions.

-TC

www.iit.edu/~tc/
tc@charlie.cns.iit.edu

Icon Programming Handbook

xvi Copyright © 1996. Thomas W. Christopher

About Icon

Copyright © 1996. Thomas W. Christopher 17

Chapter 1 About Icon

Icon is a very-high-level programming language. “Very-high-level” means
roughly that it does a lot for you. It handles a lot of the details that you would
have to handle for yourself if you were programming in a lower level language
such as C; you can do more, quicker and more easily. This makes Icon ideal for:

Quick programming—If you need a program and you need it soon, Icon is a
better choice than a lower level language.

Trying out ideas—If you have an idea for an algorithm, but you’re not sure it
will work, it is better to try it out in Icon than invest a lot of time trying to get it
going in some lower level language.

Prototyping— “There’s never enough time to do it right, but always enough
time to do it over” is a cynical saying in the software field. Actually, that’s not
such a bad approach. It’s only after you’ve implemented a system and used it
for a while that you know what’s important and what isn’t, what works, and
what doesn’t. It’s only then you understand it well enough to design it. Maybe
the right way to do the system is to do it twice, and if that’s the case, why not
do the first version in an easy, powerful programming language? The first ver-
sion won’t cost as much if you do it in Icon.

Tools—Programmers often need small programs to do simple tasks. It’s a waste
of time to expend much effort on these programs. You can get them out of the
way much more quickly in Icon than in most other languages.

Text processing—Icon’s strings and tables make text processing much more
convenient than in languages that only provide characters and character arrays.

Graphics programming—with version 9 of Icon came libraries of procedures
for programming window and graphical interfaces. Icon makes graphical user
interfaces easy.

General purpose programming—Well, why not?

The name, Icon, was chosen a long time before graphical user interfaces became
popular. It does not refer to “icons,” but probably to iconoclasm, as the devel-
opers were excited about how their language diverged from current practices in
language design.

There are some characteristics of Icon you will need to pay attention to as you
learn it:

Icon Programming Handbook

18 Copyright © 1996. Thomas W. Christopher

Very-high-level data types. Icon provides many built-in data types that you
would have to program for yourself in other languages. The strings come with
a powerful set of operations for text formatting. Even more useful are the tables,
which provide simple, data-base-like facilities. You may need some practice be-
fore you discover their full power.Table 1 lists the built-in data types in Icon.

Typelessness. Data values have data types. Variables do not. A value of any

Table 1 Icon data types

Icon data type Explanation

integer and real The usual numeric data types. Some versions of Icon pro-
vide integers of unbounded precision.

null There is only one value of this type, &null. Uninitialized
variables are given this value.

string Unlike most languages where strings are implemented as
arrays of characters, Icon provides strings as a primitive
data type. They can be of any length. There are extensive
facilities for searching and editing strings.

cset (character set) Character sets are used by string search functions to find
or skip substrings of characters.

procedure Procedures are values which can be assigned to variables.

list Lists can be indexed like arrays. They can also be used as
stacks and queues. All lists are dynamically allocated and
can grow to any length the computer’s memory can hold.

record Records types can be declared. Each record type has a
fixed number of named fields. They are used like records
(or structs) in other languages. All records are dynamical-
ly allocated. In other languages they would be accessed
by pointer, but since they are all accessed that way, there
is no explicit pointer data type.

table Tables associate values with keys. A value of any type
can be used as a key. A value of any type can be used as
a value.

set A set is a collection of values of any type. Duplicate val-
ues are not represented, so no matter how many times a
value is inserted into a set, it is present there only once.

co-expression A co-expression is a part of the program running semi-in-
dependently from the other parts. It can be used as a gen-
erator to generate values from a sequence one at a time
when needed, or it can be used as a co-routine, running as
a concurrent process.

file A file is an open file for reading or writing.

window A window on the screen for interactive graphics.

About Icon

Copyright © 1996. Thomas W. Christopher 19

type may be assigned to any variable. You will discover this to be quite useful
when placing values of different types into the same lists, tables, and sets. How-
ever, you’ll also discover that you will often make the mistake of using the
wrong data type for an operation. Unlike many other languages, the Icon trans-
lator cannot tell you that you’ve made a mistake. Instead, you will get an error
termination when you run the program.

Expression language. Icon is an expression language: almost all the executable
constructs are expressions and can return values. There is no division between
expression level constructs and statement-level constructs. You can nest control
structures within expressions in a way that doesn’t work in most other languag-
es. You will find this very convenient at times. But you should be careful; it is
easier to write highly complex expressions than to read them.

Goal-directed evaluation. The most difficult aspect of Icon for programmers
familiar with other languages is its goal-directed evaluation, that is to say, its
backtracking control. Most languages use a Boolean data type for controlling
the flow of execution. In most languages, relational operators produce Boolean
values which are tested by if’s and while’s. Icon is completely different. We’ll
spend a lot of time explaining how Icon works in Chapter 3. Briefly, in Icon ex-
pression evaluation can succeed or fail. If the expression succeeds, it produces
a value. If it fails, control backs up to an expression it evaluated earlier to see if
it will generate another value. If that expression does give another value, control
starts forwards again to see if the later expression can succeed now.

Icon Programming Handbook

20 Copyright © 1996. Thomas W. Christopher

Basics

Copyright © 1996. Thomas W. Christopher 21

Chapter 2 Basics

2.1 Compiling and running an Icon program

The author assumes you have version 9 of Icon installed on your system.

Suppose you want to call your Icon program “test”. You put your Icon program
in a file “test.icn” and translate it with the command

icont test

If it translated without errors, you run it with the command

test

If there were errors, the Icon translator will tell you where it encountered the er-
ror and what the error seems to be. We will have a fuller discussion later, in
Chapter 14.

2.2 Hello, world

It’s become customary to start off with a program that writes out “hello, world”
to show that the translator is working. Here it is in Icon:

Figure 1 Hello world program

procedure main()
write("hello, world")
end

There are several things to notice:

You can see the way to write a procedure: it begins with procedure and ends
with end. Following procedure is the name of the procedure and the param-
eter list, which can be empty.

Function write writes its arguments into the output and then terminates the
line. The next write will begin on a new line.

Strings are enclosed in double quotes.

When the program begins running, it executes the procedure named main, just
as in C.

Icon Programming Handbook

22 Copyright © 1996. Thomas W. Christopher

In Figure 2 we show that in Icon either a new line or a semicolon—or both if
you prefer—separate expressions in a sequence. Icon executes the expressions
in a sequence in order. The function writes writes its arguments into the out-
put but does not terminate the line. What is written next will follow on the same
line.

Figure 2 Expression sequences.

procedure main()
writes(”hello,”)
write(” world”)
end

procedure main()
writes(”hello,”);
write(” world”)
end

procedure main()
writes(”hello,”); write(” world”)
end

Icon is a typeless language. That means that variables are not declared to have
particular data types. Only values have data types, and a value of any type may
be assigned to any variable. For that matter, variables do not have to be declared
at all. Figure 3 illustrates this. Note the following:

Variable x is not declared at all.

The assignment operator is := .

Variable x is assigned two values with different types, first a string and then an
integer.

Procedure write is as willing to write out an integer as a string. In fact, it will
write out anything it knows how to convert to a string.

Figure 3 Typelessness

procedure main()
x := "Example "
writes(x)
x := 1
write(x)
end

Figure 4 shows local declarations and the exchange operator. The two things to
notice are:

The local introduces declarations of local variables within the procedure.
They are allocated memory when the procedure is entered and they vanish when

Basics

Copyright © 1996. Thomas W. Christopher 23

the procedure returns. If there is no declaration for a variable, like x in Figure
3, the translator makes it a local variable.

Operator :=: is the exchange operator; it will exchange the values of two vari-
ables.

Figure 4 Local declarations

procedure main()
local x,y
x := " Example "
y := 2
write(x,y)
x :=: y
write(x,y)
end

When variables are created, they are given the initial value &null which caus-
es most operations to report an error at run time. You will encounter that run-
time error a lot.

Figure 5 Uninitialized variables

procedure main()
local x
write(x+1)#this will cause an error at run time

(and notice: comments begin with
and run to the end of the line)

end

2.3 Declarations

We have seen local declarations. Icon actually provides all the following kinds
of declarations:

Table 2 Declarations

Declaration Example Occurs Explanation

local local x,y,z inside
procedures

Creates new copies of the vari-
ables whenever the procedure
is entered. Deletes them when
the procedure returns. The
names are known only within
the procedure.

Local is assumed for unde-
clared variables, but do not use
this feature: introducing a glo-
bal declaration later can cause a
procedure to stop working.

Icon Programming Handbook

24 Copyright © 1996. Thomas W. Christopher

2.4 Exiting a program

There are several ways to exit an Icon program. The way you have already seen
is by returning from the procedure main. There are two functions that are also
used, exit and stop.

static static x,y,z inside
procedures

Creates copies of the variables
when the program starts exe-
cuting. The names are known
only within the procedure.
There is only one copy of a stat-
ic variable. It retains its value
between procedure calls.

global global x,y,z outside
procedures

Creates copies of the variables
when the program starts exe-
cuting. The names are known
only within all the procedures
that do not declare the same
names for local or static vari-
ables. There is only one copy of
a global variable.

procedure procedure
 name(x,y,z)
...
end

outside
procedures

See Section Chapter 5, Proce-
dures, on page 53.

record
constructor

record name(x,y,z) outside
procedures

See section 2.10 on page 33 and
Chapter 12 on page 123.

linkage link name outside
procedures

Tells the linker that this pro-
gram uses procedures, records,
or global variables declared in
the file named name. The name
may be an Icon identifier, but it
must be a quoted string if it
contains characters that Icon
does not allow in identifiers.

Table 2 Declarations

Declaration Example Occurs Explanation

Table 3 Exiting a program

exit() exit the program with a normal exit status (i.e., tell the op-
erating system every thing is okay).

Basics

Copyright © 1996. Thomas W. Christopher 25

2.5 Elementary numbers

2.5.1 Integer literals

You can write an integer literal (constant) as a decimal number, e.g., 25.

2.5.2 Selected integer operators

Like most other languages, you use

The operators are executed left to right except for exponentiation which is exe-
cuted rightmost first. Operators *, /, and % are done before + and -. Operator
^ is done before any of the others. That is to say, the higher precedence operators
are executed before the lower precedence operators.

2.6 Elementary strings

2.6.1 String literals

You write a string literal (constant) surrounded by quotation marks:

"Like this"

If you need to include a quote in a string, put a backslash in front of it, e.g.,
"\"". If you need to include a backslash, put a backslash in front of it, "\\".
There are special ways to include other characters, but we will not discuss them
until Chapter 6 on page 61.

exit(i) exit the program and return the value of integer i as the
exit status. This is how to tell the operating system things
are not okay, but you will have to know how your OS in-
terprets these exit status values to use this.

stop(s1,s2,...,sn) write out the strings s1 s2 ... sn and exit with an error sta-
tus. See a further discussion in Section Chapter 8, I/O, on
page 93.

Table 3 Exiting a program

Table 4 Arithmetic operators

operator precedence meaning

+ 8 add

- 8 subtract

* 9 multiply

/ 9 divide

% 9 remainder

^ 10 (right associative) exponentiation

Icon Programming Handbook

26 Copyright © 1996. Thomas W. Christopher

2.6.2 Selected string operators

You can concatenate two strings with the || operator, e.g.,

s:="ab"
s:=s||"cd"
write(s)

will write out "abcd".

You can find out the length of a string using the unary * operator, e.g.,

s:="abc"
write(*s)
s:="a"
write(*s)
s:=""
write(*s)

will write out

3
1
0

2.6.3 Subscripting strings

The characters in a string are numbered from 1 through the length of the string.
You can subscript a string the same way you subscript an array in most other
languages, put the index in brackets following the string:

s:="find"
write(s[3])
s[4] := "e"
write(s)

will write out

n
fine

Unlike most other languages, there are no individual character values. There are
only character strings of length one. Expression s[3] above returned a length
one string, "n".

When you assign to a subscripted string, you can assign more or fewer than one
character. For example,

s:="fund"
s[4] := ""
write(s)
s[3] := "nny"
write(s)

Basics

Copyright © 1996. Thomas W. Christopher 27

will write

fun
funny

Icon also allows you to subscript a string with a range of positions, selecting
more or fewer than one character. You use the form

s[i : j]

(where i ≤ j) which selects the substring from character i up to, but not includ-
ing, character j. (The actual rule, as we will see in section 6.2 on page 62, is that
the string positions are between the letters and at each end, so s[i] refers to the
letter to the right of position i, and s[i:j] refers to the characters between posi-
tions i and j.)

If you assign to the substring, you replace the selected characters. If i = j when
you assign, you insert before character i. If i = j = *s+1, you append to s. For
example

s:="abcd"
write(s)
s[3:3]:="x"
write(s)
s[*s+1:*s+1]:="yz"
write(s)

writes out

abcd
abxcd
abxcdyz

To recapitulate the rules, where s is a string variable and 1 ≤ i ≤ j ≤ *s+1:

s [i] selects the single character substring, character i, i ≤*s.

s[i:j] (where i ≤ j) selects the substring from character i through character j-1. If
i=j, the substring is empty, but it is a particular substring at a particular position
in string s, which is important when you assign to it.

You can assign a string of any length to s[i] or s[i:j]. The assignment

s[i]:=t

behaves like:

s:=s[1:i] || t || s[i+1:*s+1]

and

s[i:j]:=t

behaves like:

Icon Programming Handbook

28 Copyright © 1996. Thomas W. Christopher

s:=s[1:i] || t || s[j:*s+1]

2.6.4 Comparison operators

These are the elementary comparison operators for numbers and strings:

2.7 Elementary control constructs

Here are the three most common control constructs used in Icon. We are omit-
ting most of the details until Chapter 4 on page 45:

2.7.1 If expressions

You can choose what code to execute using the if expression:

if expr1 then expr2 else expr3

For the moment we will just use a single comparison operator in expr1. If expr1
succeeds (in other languages we would say, if expr1 is true, but we do not say
that in Icon), then Icon executes expr2, otherwise, if expr1 fails, Icon executes
expr3.

 Chapter 3 on page 35 and Chapter 4 on page 45 will discuss the other options
for expr1 in much greater detail.

Because the if expression is an expression, it returns a value, the value of either
expr2 or expr3.

2.7.2 While expressions

You can use the while expression to execute some code repeatedly:

while expr1 do expr2

Again, for the moment, we will restrict ourselves to a single relational operator
in expr1. As long as expr1 succeeds, Icon executes expr2. Even though the
while expression is an expression, it does not return a value.

Table 5 Comparison operators

numeric
comparison

string
comparison

precedence will succeed when the operands are

i = j s1 == s2 6 equal

i ~= j s1 ~== s2 6 not equal

i < j s1 << s2 6 less than

i <= j s1 <<= s2 6 less than or equal

i > j s1 >> s2 6 greater than

i >= j s1 >>= s2 6 greater than or equal

Basics

Copyright © 1996. Thomas W. Christopher 29

2.7.3 Expression sequences

You can use braces, { expr1; expr2;...; exprn }, to group sequences of
expressions to include them in an if expression or a while expression. The ex-
pressions within the braces are separated by semicolons, or by new lines, or
both, just like the expression sequence in the body of a procedure.

The expression sequence is an expression. It returns the value of the last expres-
sion in the sequence.

2.8 Elementary generators

Generators, expressions that deliver a sequence of values, are the heart of Icon.
They will be covered in depth in Chapter 3 on page 35. Here we just show one
of the uses.

The loop

every i := 1 to 10 do e

is the Icon equivalent of a for loop. The expression 1 to 10 is a generator that
generates the integers 1, 2, ..., 10. Each of the values is assigned to variable i and
the expression e is evaluated.

Several generators can be combined with an & operator to give the effect of
nested loops:

every i := 1 to 10 & j := 1 to 10 do e

behaves like two nested for loops. For i = 1, j will iterate from one to 10, then
for i = 2, j will go from 1 to 10, and so on.

You can also put in tests to eliminate some of the iterations:

every i := 1 to 10 & j := 1 to 10 & i ~= j do e

will omit evaluating e if i and j have the same value.

2.9 Elementary lists

2.9.1 List creation: list(n)

A list is like an array in other languages. You can create a list whose elements
are numbered 1, 2, ..., n using the list function,

list(n)

For example,

L:=list(3)

will create a list of length 3 and assign it to L. All the elements of the list will
be initialized to &null, the same as variables are.

Icon Programming Handbook

30 Copyright © 1996. Thomas W. Christopher

2.9.2 Subscripting lists

A list of length n is an array of n elements with the elements numbered from 1
through n, just like arrays. You subscript a list the same way as a string: put the
subscript expression in brackets following the list, e.g.,

L:=list(2)
L[1]:=5
L[2]:=10
write(L[1])

writes

5

You can create a list of length zero. Just call list(0).

2.9.3 List creation: [...]

If you want to create a short list with specific values in it, there is no need to put
the values in with assignment expressions. You can list the values you want in
brackets:

L:=[5,10]
write(L[1])

writes

5

You can create a list of length zero by writing [].

2.9.4 List creation: list(n,x)

If you want to create a list with all elements the same, but not &null, use
list(n,x) which will create a list of length n all of whose elements are x.

2.9.5 Selected list operators

You can concatenate two lists with the ||| operator, e.g.,

s:=[5,6]
s:=s|||[7,8]
write(s[3])

will write out 7.

The result of x|||y is a new list containing the elements of x followed by the
elements of y. Lists x and y are not altered.

You can find out the length of a list using the unary * operator, e.g.,

s:=[1,2,3]
write(*s)

Basics

Copyright © 1996. Thomas W. Christopher 31

s:=[]
write(*s)

will write out

3
0

You can compare two lists to see if they are the same list or not by using the
=== or ~=== operators. (Use three equal signs in a row.) What does it take to
be the same list? Consider

L:=[1,2]
M:=L

After this code, L === M will succeed and L ~=== M will fail. The assignment
M:=L makes L and M point to the same list. Now consider

L:=[1,2]
M:=[1,2]

After this code, L ~=== M will succeed and L === M will fail. The assignment
M:=[1,2] makes M point to a new list which cannot be the same as L. Even
though L and M point to lists that have the same length and the same contents,
they are not the same.

Example:

x:=1
y:=1
write(if x === y then "equal" else "not equal")

will write

equal

Example:

x:=1
y:="1"
write(if x === y then "equal" else "not equal")

will write

not equal

Example:

L:=[[1],[1]]
write(if L[1] === L[2] then "equal"

else "not equal")

Icon Programming Handbook

32 Copyright © 1996. Thomas W. Christopher

will write

not equal

since the two separate occurrences of [1] create two different lists.

Example:

L:=list(2,[1])
write(if L[1] === L[2] then "equal"

else "not equal")

will write

equal

since the occurrence of [1] in the list function is evaluated just once, creating
one list, which is assigned to both elements of L.

2.9.6 Differences between lists and strings

Here are some differences between lists and strings:

There are string literals. There are no list literals.

Lists are mutable values; strings are immutable. This means you can change an
element of a list and see that change in all the lists equal (===) to it. If you
change a character in a string variable, Icon actually creates a new string with
the change made and assigns that new string back to the variable.

A subscripted string is a string of length one. A subscripted list is not usually a
list of length one: it’s whatever value of whatever type was in that element.

When you assign a value to an element of a list, the length of the list does not
change. When you assign a string to a subscripted string, the length of the string
can change. The string you assign is spliced in replacing the character at that po-
sition.

You can assign any kind of value to any element of a list. You can only assign
strings to subscripted string variables.

Procedure write will write out a string. It will not write out a list.

You can assign a list to an element of another list. You can assign a list to an
element of itself, getting a circular structure.

You can only assign to a subscripted string variable. You cannot assign to a sub-
scripted string constant, e.g.,

s:="abcd"
s[2]:="x"

but not

Basics

Copyright © 1996. Thomas W. Christopher 33

"abcd"[2]:="x"

You can always assign to a subscripted list, e.g.,

[1,2,3][2]:=5

2.9.7 Procedure main’s parameter

Procedure main takes one parameter, a list of all the command line arguments
as strings. As you have seen above, you do not actually have to declare proce-
dure main with a parameter. Here’s an example of using the parameter, a pro-
gram to echo the command line arguments:

procedure main(args)
i := 1
while i <= *args do {

writes(args[i]," ")
i:=i+1

}
write() #terminate line
end

2.10 Records

You can create new record data types in Icon, just as you can in Pascal (records),
C (structs), and C++ (classes). A record type is declared:

record rname(f1,f2,...,fn)

where

• rname is the name being given to the record type.

• f1, f2, ..., fn are the names being given to the fields (members) of the record.

• the record declaration is only permitted outside of procedure declarations.

For example

record Point(x,y)

might be used to define a point in a two-dimensional coordinate system.

A point may be created by the expression:

r := Point(1,2)

which will create a new record of type Point, initialize its x field to 1 and its y
field to 2, and assign the point record to variable r.

The fields of the record can be accessed using the binary ".", field referencing,
operator, e.g.

r.x := r.y

Icon Programming Handbook

34 Copyright © 1996. Thomas W. Christopher

Unlike Pascal, C, and C++, there are no pointers and no distinction between ac-
cessing the field of a record variable (e.g. r.f1 in C) and accessing the field of
a record via a pointer (r->f1). Internally, Icon accesses all records through
pointers.

p1 := Point(1,2)
p2 := p1 #p2 points to p1
p2.x := 2 #also changes p1.x
write(if p1 === p2 then "equal" else "not equal")
write(if p1.x === p2.x then "equal"

else "not equal")

will write

equal
equal

Generators

Copyright © 1996. Thomas W. Christopher 35

Chapter 3 Generators

3.1 Expressions are generators

The greatest difference between Icon and other programming languages is this:
in Icon, expressions are generators. Expressions generate sequences of values.

To be sure, constants and variables generate only single values, but there are
language constructs that generate more than one value, and there are some that
may generate none.

Expressions generate their values by backtracking. To understand how this
works, you will need to understand the order in which expressions are evaluat-
ed.

3.2 Expression evaluation order

Generally, expressions are evaluated left to right and bottom up.

• Control goes left to right through an expression evaluating it.

• As soon as the subexpressions are evaluated, the expression that contains
them is evaluated.

Consider the expression:

(a-b)+(c-d)*(e-f)

The expression will be evaluated in the order:

1. t1:=a-b The ti’s are temporary variables.

2. t2:=c-d

3. t3:=e-f

4. t4:=t2*t3 now the operands of the multiply are available

5. t5:=t1+t4 now the operands of the add are available

The difference between Icon and more common programming languages is that
in Icon, after moving forward through the expression, control can

• back up through the list of operations to find an operation that can generate

Icon Programming Handbook

36 Copyright © 1996. Thomas W. Christopher

more values,

• generate another value from it, and then

• move forward again evaluating the subsequent operations again with the
new value.

3.3 Every

One context in which more than one value is required is the every expression.
The expression

every e1

creates a context in which e1 generates all its values.

3.4 To

Some operators can generate a series of values. Consider the operator to. The
expression

1 to 5

can generate the series values 1, 2, 3, 4, 5.

Whether it will be allowed to generate all those values depends on the context
in which it occurs. Some contexts allow at most one value to be generated. In
the sequence of expressions in the body of a procedure, for example, each ex-
pression is allowed to generate at most one value. So the following code will
write out the single value, 10.

procedure main()
write(10 to 20)
end

However, the following code will write out the line

1 2 3 4 5

Figure 6 Write 1 2 3 4 5

procedure main()
every writes(" ",1 to 5)
write()
end

The e1 to e2 generator steps by 1 from e1 through e2 which must be great-
er than or equal to e1 to generate any values.

The to operator associates to the left, e.g.,

every writes(" ",1 to 2 to 3)

writes out

Generators

Copyright © 1996. Thomas W. Christopher 37

 1 2 3 2 3

The to operator doesn’t work with large integers, i.e. integers larger than a ma-
chine word.

3.5 To-by

There is fuller form of the to generator, e1 to e2 by e3 , that will step by
the value of e3. In this case, e3 can be negative, but then e2 must be less than
or equal to e1 to get any values.

The to-by operator doesn’t work with large integers.

3.6 Element generation: !e

The ! operator generates the components of data objects.

! x

does the following:

• if x is a string, !x generates the one character substrings of x in order from
1, i.e., x[1 to *x]

• if x is a string variable, !x yields variables which can be assigned to.

• if x is a string value, e.g., a literal, !x generates string values and cannot be
assigned to.

• if x is a list, !x generates the elements of x in order from 1, i.e., x[1 to
*x].

• if x is a list, !x generates variables, e.g. you can use !x :=0 to assign zeros
to each element of a list.

• ! applies to other data types as well, as will be discussed in sections on those
types.

3.7 Backtracking

How does every work? Consider the sequence of operations for the expression
in the every line of Figure 6 on page 36:

1. get the variable writes

2. get the string " "

3. get the number 1

4. get the number 5

5. start up the generator 1 to 5 and generate the first value, 1.

6. Whenever it resumes, generate the next value from the generator.

Icon Programming Handbook

38 Copyright © 1996. Thomas W. Christopher

7. call the procedure writes passing it the results of steps 2 and 6.

Control goes down this list doing each operation in turn. When it gets to the end
of the list, the every forces it to move back through the list looking for a gener-
ator. It finds the generator in step 6 and resumes executing it. The generator
generates another value, 2, so control now starts forwards through the code
again. Eventually, once 5 has been written out, the generator will not be able to
give another value. So control will continue searching back looking for another
generator. Not finding one, it will fall off the front of the list, which tells control
it is done evaluating the expression.

This process of searching back through the sequence of operations looking for
a generator is called backtracking.

3.8 Failure

Some control constructs, like the every-expression, cause backtracking into ex-
pressions.

Another way to cause backtracking is expression failure. To anthropomorphize
a bit, if an operation fails, control backtracks to see if it can generate some val-
ues that will make the operation succeed.

There is a built-in expression that always fails: &fail. Whenever Icon executes
it, it always backs up. The effect of the every-expression in could be achieved
by:

writes(" ",1 to 5) + &fail

The &fail causes control to keep backtracking to the 1 to 5 generator, gen-
erating a new number and writing it out. What does the + do? Nothing. The
&fail prevents control from ever reaching the +. It is never executed.

3.9 Binary operators containing generators

Normal binary operators, like the arithmetic operators, simply compute a single
output value for a pair of operands. They only generate more values when gen-
erators earlier in the list of operations cause them to be reevaluated.

If both subexpressions have generators in them, then the generator in the right
subexpression runs to completion before the generator in the left subexpression
is allowed to generate another value. Once the left generator has generated a
new value, the right generator is reinitialized and starts anew. For example,

every writes(" ",(1 to 2) + (10 to 20 by 10))

writes 11 21 12 22

3.10 Arithmetic relational operators

A relational operator is a binary operator that succeeds if the relation holds be-

Generators

Copyright © 1996. Thomas W. Christopher 39

tween its operands and fails if it does not. For example,

The relational operator yields the value of its right operand if it succeeds. Since
relational operators are performed left to right, Icon allows such convenient
forms as

One common trick in Icon is to write conditional assignment statements. Sup-
pose you want to assign to variable x the maximum of the values of x and y. You
can write:

x:= x < y

This says:

• If x is less than y then assign the value of y to x. Since y is the maximum of
x and y, this is what we want.

• If however x is equal to or greater than y then the relation fails and the over-
all assignment expression stops executing before the assignment is done.
Since x has the maximum value, we do not want to assign it a new value.

3.11 Conjunction: e1 & e2

There is a special binary operator, &, read “and,” that simply returns the value
of its right operand. It has the lowest precedence, even lower than assignment.

The & operator is used for control rather than computation. It allows you to write
a sequence of generators and tests. For example,

every i:=1 to 3 & j:=1 to 3 & i~= j &
 writes(" ",i+j)

writes out

 3 4 3 5 4 5

3.12 Null and non-null tests: / x and \ x

There are two unary operators that compare their operands to &null and succeed

a < b will succeed if a’s numeric value is less than b’s and
fail if a’s value is greater than or equal to b’s. (It will
stop the execution of the program if the operands are
not numeric and cannot be converted to numeric.)

a < b < c which succeeds if a is less than b and b is less than c,
yielding the value of c, and fails otherwise

Icon Programming Handbook

40 Copyright © 1996. Thomas W. Christopher

or fail if they are equal.

If these operators are given variables as operands, they leave them as variables.
Therefore, they can be used for conditional initialization. For example

/ x := 0

will assign x the value 0 if x had the value &null. Since variables are initialized
by the system to &null, this can be used to initialize a variable the first time it
is encountered.

Another use is to represent Boolean values. Just allow &null to represent false
and anything else to represent true. What you might write in some other lan-
guage as “if (x and y) then...” you would write in Icon as “if \x & \y then...”.

3.13 Coevaluation

A list of expressions separated by commas within a pair of parentheses are eval-
uated as if they were separated by &’s. For example

every writes(" ",(1 to 3 , 1 to 2))

behaves the same as

every writes(" ",1 to 3 & 1 to 2)

This is called co-evaluation.

Generally

(e1, e2, ..., en)

is equivalent to

(e1 & e2 & ... & en)

Why are there two ways to do the same thing? This is probably because co-eval-
uation is a degenerate version of selection. If you place an integer, k, in front of
the parentheses, i.e.,

k (e1, e2, ..., ek, ..., en)

it will return the value of the kth expression. When used as a generator, for every
combination of values the expressions generate, this form will return the kth.

So,

(e1, e2, ..., en)

Table 6 Testing for &null

/ x succeeds if x has the value &null and fails otherwise

\ x succeeds if x does not have the value &null and fails otherwise

Generators

Copyright © 1996. Thomas W. Christopher 41

is equivalent to

n (e1, e2, ..., en)

For example,

every writes(" ",(1 to 3, 1 to 2))

writes

 1 2 1 2 1 2

while

every writes(" ",1 (1 to 3, 1 to 2))

writes

 1 1 2 2 3 3

In fact, the general form of selection is

e0 (e1, e2, ..., ek, ..., en)

where the value of expression e0 selects the value to return. Naturally, e0 is
evaluated before the other expressions and can be a generator.

every writes(" ",(1 to 2) (1 to 3, 1 to 2))

writes

 1 1 2 2 3 3 1 2 1 2 1 2

If e0 returns a procedure rather than a number, this syntax does not mean selec-
tion: it is a procedure call. See Section 5.1, Procedure calls, on page 53.

3.14 Alternation: e1 | e2

The vertical bar, |, read “or,” looks like a binary operator but does not behave
like one. Expression

e1 | e2

generates all values generated by e1 followed by all values generated by e2.

1 | 2 | 3 | 4

generates the sequence 1, 2, 3, 4.

So does

(1 | 2) | (3 | 4)

The | operator has lower precedence than comparison operators, so you could
write

Icon Programming Handbook

42 Copyright © 1996. Thomas W. Christopher

i = j | i = k

to see if i is equal to either j or k. There is, however, a different idiom for that:

i = (j | k)

You can use | on the left hand side of an assignment to generate variables, e.g.,

every a | b | c := 0

although it is neither as clear nor as efficient as

a := b := c := 0

3.15 Sequence generation: seq(...)

The to and to-by operators put a limit on the number of values generated. If
you do not want to put a limit, you can use the system function seq to generate
a sequence of values.

The seq operator doesn’t work with large integers.

3.16 Repeated alternation: | e

A generator that is quite difficult to use well is the unary vertical bar, |. If you
put | in front of a generator, g,

| g

it will allow g to generate all its values, and then it will reinitialize g and allow
it to generate all its values again, and again, and again. Only if g immediately
fails on some initialization will | g fail and allow control to backtrack past it.
Here are some examples:

Table 7 Function seq()

seq() generates the sequence 1,2,3,...

seq(i) generates the sequence i,i+1,i+2,...

seq(i,j) generates the sequence i,i+j,i+2j,...; j must not be 0.

Table 8 Examples of |e

Expression Generates Explanation

| 3 3, 3, 3, The literal 3 generates a sin-
gle value. The | repeatedly
initializes it to generate an-
other value 3.

|(0 | 1) 0, 1, 0, 1, 0, 1,...

Generators

Copyright © 1996. Thomas W. Christopher 43

3.17 Limitation: e1 \ e2

If you use seq() or |e , you risk creating infinite computations. One way to
prevent that is the limit operator:

e1 \ e2

will allow e1 to generate at most e2 values. For example,

| &fail &fail fails immediately.
Since its operand did not
generate any values, the |
also fails.

(i:=0) &
|(i+:=1)

1, 2, 3, ... similar to seq(), except
that it uses the variable i to
hold the values.

Table 8 Examples of |e

Expression Generates Explanation

Table 9 Examples of e1\e2

expression generates Explanation

seq()\5 1, 2, 3, 4, 5

(1 to 3)\5 1, 2, 3

(1 to 9)\5 1, 2, 3, 4, 5

1 to 9\5 1, 2, 3, 4, 5,
6, 7, 8, 9

The \5 limits the number
of values generated by
the literal 9. The limit op-
erator has a very high
precedence, just lower
than unary operators.

|1\5 1, 1, 1, 1, 1

|(1 to 3) \ 5 1, 2, 3, 1, 2

Icon Programming Handbook

44 Copyright © 1996. Thomas W. Christopher

As the example (1 to 3)\(2 to 4) shows, the limit operator evaluates its
operands right before left. Note: This is the only exception to Icon’s left-to-
right evaluation order.

3.18 Idiom: generate and test

We know by the Pythagorean Theorem that the sum of the squares of the lengths
of the sides of a right triangle is equal to the square of the length of the hypote-
nuse. Suppose we want to find all lengths of sides of right triangles that are in-
tegers in the range 1 through 100 (including the hypotenuse). We can do it with
the following program:

Figure 7 Figure 2 Right triangles

procedure main()
every i:=1 to 100 &

j:=i to 100 &
m:=j to 100 &
m*m = i*i+j*j &

write(i," ",j, " ",m)
end

This is an example of generate and test paradigm often used in artificial intel-
ligence and combinatoric search programs. The goal here is specified by the test
m*m = i*i+j*j. Generators preceding the tests will try to find some values
that will pass the tests.

(1 to 3)\(2 to 4) 1 2 1 2 3 1 2 3 Unlike all other opera-
tors, the limit operator
evaluates its right oper-
and before its left. For ev-
ery value generated by its
right operand, it gener-
ates and limits the num-
ber of values generated
by its left.

Table 9 Examples of e1\e2

expression generates Explanation

Control Constructs

Copyright © 1996. Thomas W. Christopher 45

Chapter 4 Control Constructs

4.1 {e1; e2; ; en }

Braces are used to surround a sequence of expressions. Every expression except
the last is evaluated in sequence to produce at most one value. Whether it suc-
ceeds or fails, control then goes on and evaluates the next expression in the se-
quence. The last expression, en, will then generate as many values as the
surrounding context allows. For example,

every {writes(" ",1 to 5);writes(" ",6 to 10)}

writes out

1 6 7 8 9 10

The semicolon can be replaced with a new line in the sequence, just as in the
expression sequence in the body of a procedure.

4.2 every do

We have already seen the simple form of an every expression:

every e1

which generates all the values for e1.

Another form is

every e1 do e2

which says: for each value of e1, evaluate e2. Icon does the following:

• It will cause e1 to generate all the values it can.

• Each time e1 generates a value, Icon evaluates e2.

• Expression e2 may succeed or fail.

• Icon will generate at most one value for e2 each time it evaluates it.

• The every-do expression fails when e1 fails.

So the expression every e1 do e2 behaves very much like every e1 &
(e2)\1. However, it looks more like loops in conventional languages with the
do, so it’s more intuitive. It behaves differently with respect to the break and

Icon Programming Handbook

46 Copyright © 1996. Thomas W. Christopher

next expressions, discussed in section 4.11 and section 4.12 on page 51.

Every-expressions are expressions and can be placed inside other expressions.
What values do they generate? Actually, none. Like &fail, they fail without
returning a value. However, if they are exited by a break expression, they can
return values. See Section 4.11, break, on page 51.

4.3 if then else
if e1 then e2 else e3

• The if-expression behaves much like the if-statement in conventional lan-
guages with these differences:

• The expression e1 is evaluated to determine its success or failure. If e1 suc-
ceeds, the if expression behaves like e2; if e1 fails, it behaves like e3.

• Expression e1 is a bounded expression—at most one value is generated
from e1. Control is cut off from backing into e1 after it has generated one
value.

• Either e2 or e3 may generate as many values as the context requires.

As in other languages, there is a version that omits the else expression.

if e1 then e2

If the else clause is omitted and e1 fails, the entire if expression fails.

For example, to sort a pair of numbers in variables x and y so that the smaller is
in x and the larger in y, you can write:

if x>y then x:=:y

4.4 idiom : goal directed evaluation

Consider the following program to find the lengths of the sides of some right
triangle for which the sum of the sides is no less than 1000 and no more than
2000 units long:

Figure 8 Find a right triangle

procedure main()
local i,j,m,n
if i:=1 to 2000 &

j:=i to 2000 &
n:=i*i+j*j &
m:=integer(sqrt(n)) &
m*m = n &
1000 <= i+j+m <= 2000
then

write(i," ",j," ",m)
end

In other programming languages, you would probably have to write several

Control Constructs

Copyright © 1996. Thomas W. Christopher 47

nested loops to find such a triangle. (By the way, the one it finds has sides 33,
544, and 545.) Once you’ve found it, you’d have to jump out of the nest of loops
to go on with the program.

This is an example of goal directed evaluation. The goal is represented by the
tests m*m = n & 1000 <= i+j+m <= 2000. The computation can be
viewed as trying to generate sides i and j that achieve the goal.

4.5 case of { }

The case expression behaves similarly to the case or switch statement in other
programming languages. The general form

case e1 of {
e2 : e3
e4 : e5
...
e2n : e2n+1
default : e2n+2
}

is equivalent to

{(tmp := e1)\1 &
if tmp===(e2) then e3
else if tmp===(e4) then e5
...
else if tmp===(e2n) then e2n+1
else e2n+2
}

where tmp is an otherwise unused variable. To express its behavior another
way:

• the expression e1 is evaluated to give one value which is assigned to a tem-
porary variable.

• if the expression e1 fails, the case expression fails.

• in order, for i from 1 to n, Icon compares the value of expression e1 to the
values generated by expression e2i .

• the comparison operator for the equality comparison is the universal equal-
ity test, ===. If it is given two numbers, it performs a numeric test; if two
strings, a string test. For other kinds of objects, it tests to see whether they
are the same object or not.

Icon Programming Handbook

48 Copyright © 1996. Thomas W. Christopher

• as soon as Icon finds a value equal to some value generated by an e2i , it
evaluates e2n+1 to yield the values of the case expression.

• if none of the expressions e2i generate a value equal to the value obtained
from e1, then the default expression, e2n+2, is evaluated as the value of the
case expression.

• the default expression, e2n+2, is optional. If it is not present and no other
expression is selected, the case expression fails.

4.6 while do
while e1 do e2

The while expression is like the while statement in other programming languag-
es. It differs from the every expression in that it generates at most one value
from e1 per iteration. Briefly:

• it evaluates e1

• if e1 succeeds, it evaluates e2

• e2 may succeed or fail

• it generates at most one value from e1 and at most one value from e2 each
iteration

• once e2 has been evaluated, it restarts evaluation of e1 from the beginning

• it fails when e1 fails

There is a version without the do clause:

while e

Which repeatedly evaluates e from the beginning until it fails.

For example, here is a file copy program. It copies its input into its output. If
you are running it from the keyboard, it writes back each line you type to it.

Figure 9 File copy

procedure main()
while write(read())
end

The read procedure reads one line of input at a time and will fail when the in-
put is finished.

The file copy cannot use an every expression. The read procedure is not a gen-

Control Constructs

Copyright © 1996. Thomas W. Christopher 49

erator. It will return one line each time it is entered as control moves forward,
but it cannot be resumed during backtracking; backtracking will back past it.

Here is a small utility program to create define macros in C for bit positions.
You feed it a list of identifiers and it will create one #define line for each
identifier. This makes each one a different power of two. That is, it will make
each one a mask for a different bit position.

Figure 10 Define bit positions

procedure main()
i := 1
while x := read() do {

write("#define ",x," ",i)
i := i+i

}
end

4.7 not
not e

The unary operator not e will succeed if its operand e fails and fail if it suc-
ceeds. If not succeeds, it returns &null (It has to return something, and its op-
erand did not give it any value to return.)

Since not is a unary operator, it has higher precedence than any binary operator.
You will almost always need to surround its operand with parentheses.

4.8 idiom: write "all do" as "not any don’t"

Icon evaluates expressions to try to find some way to make them succeed. Suc-
cess means there exists at least one way to make it succeed. For example, sup-
pose we want to know if there are two elements of a list, L, that are equal. We
could write:

i:=1 to *L-1 & j:=i+1 to *L & L[i]===L[j]

Sometimes you want to know whether something’s true for all rather than
whether it’s true for any. There is no way to write that directly in Icon. You have
to resort to a double negative.

Something is true for all if and only if there are none for which it is not true.

Suppose we wish to find whether all elements of a list are equal. If all are equal
to each other, they are equal to the first element, so if there is any element not
equal to the first, then they are not all equal. We could write the test as

not (i:=2 to *L & L[1]~===L[i])

Icon Programming Handbook

50 Copyright © 1996. Thomas W. Christopher

4.9 until do
until e1 do e2

The until expression behaves like

while not (e1) do e2

Briefly:

• it evaluates e1

• if e1 fails, it evaluates e2

• e2 may succeed or fail

• it generates at most one value from e2 each iteration

• once e2 has been evaluated, it restarts evaluation of e1 from the beginning

• it generates at most one value from e1 for it fails as soon as e1 succeeds

There is a version without the do clause:

until e

Which repeatedly evaluates e from the beginning until it succeeds.

For example, consider the following program to generate Fibonacci numbers up
to 100,000. Fibonacci numbers come in a sequence defined as follows: the first
two Fibonacci numbers are 1; each subsequent number is the sum of the two
previous Fibonacci numbers.

Figure 11 Write Fibonacci numbers using until

procedure main()
local i,j
i:=1
j:=1
until i>100000 do {

write(i)
i+:=j
i:=:j

}
end

4.10 repeat

The repeat expression

repeat e

will repeatedly evaluate the contained expression e. It will never terminate un-
less exited explicitly by, for example, break, return, suspend, or fail.

Control Constructs

Copyright © 1996. Thomas W. Christopher 51

4.11 break

The break expression is used to exit from a surrounding loop of any type (ev-
ery, while, until, repeat). There are two forms, break alone, or break
with a contained expression:

break
break expression

For the simple break, control exits the immediately surrounding loop. Unlike
falling out of the loop, which fails, exiting with a break succeeds yielding the
value of the expression. If the expression is absent, it yields a &null.

You could write something like

if every {... break ...} then exited_by_break()
else exited_normally()

The form break expression exits the loop and generates the values the expres-
sion generates. In fact, the expression behaves as if it is outside the loop. If it
contains a break or next, they apply to the next surrounding loop.

To exit two levels of loop, use

break break

Fibonacci numbers, again:

Figure 12 Fibonacci using repeat

procedure main()
local i,j
i:=1
j:=1
repeat {

write(i)
i+:=j
i:=:j
if i>100000 then break

}
end

4.12 next
next

The expression next causes the loop it’s in to start its next iteration.

If it’s within an every expression,

every e1 do e2

Icon Programming Handbook

52 Copyright © 1996. Thomas W. Christopher

it immediately causes backtracking back into the control expression, e1.

If it’s within a while or until,

while e1 do e2

or

until e1 do e2

it enters the control expression, e1, again.

If it’s within a repeat,

repeat e1

it just starts evaluating e1 again.

Procedures

Copyright © 1996. Thomas W. Christopher 53

Chapter 5 Procedures

5.1 Procedure calls

A procedure call has the form:

expr0 (expr1 , expr2 , ..., exprn)

• Expression expr0 evaluates to a procedure value.

• Most commonly, expr0 is a global name that has been assigned the proce-
dure value either by a procedure declaration or by being the name of a built-
in function.

• Expression expr0 may be an expression that evaluates to or generates proce-
dures, e.g., (F|G)(x,y) would call F(x,y) and then, if backtracked into,
call G(x,y).

• The actual parameter list, expr1 , expr2 , ..., exprn, may be empty.

• The number of actual parameters provided may be more or less than the
number of parameters specified in the procedure declaration. Extra param-
eters are ignored. Missing parameters are given the value &null.

• Expressions may be omitted from within the actual parameter list, e.g.

F (, 2, , 4).
The missing parameters are given the value &null.

• The parameters are passed by value. If there is a variable in the parameter
list, its value is passed to the procedure.

However, Icon waits until the moment of call to fetch the current value of a
variable. For example

write(x:=1," ",x+:=1," ",x+:=1)
writes

3 3 3
since each assignment returns the variable on the left hand side (x) and the
write fetches the current value of each of the occurrences of x just before
the call and after the final assignment has been done.

• The parameters are evaluated left to right. All must succeed giving a value
before the procedure is called.

Icon Programming Handbook

54 Copyright © 1996. Thomas W. Christopher

• The procedure is called for each set of values the parameters generate as
long as control backs into it.

• The procedure itself may fail, may return a value, or may generate a se-
quence of values.

• The procedure may return or generate variables that can be assigned to.

5.2 Procedure declarations

The form of a procedure declaration is

procedure name (formal1, formal2,..., formaln)
declarations
initial_expression_option
 expression_sequence
end

• The procedure declaration creates a procedure value.

• The name of the procedure becomes a global variable initialized to the pro-
cedure value.

• The procedure value can be assigned to other variables and put in data struc-
tures.

• The list formal1, formal2,..., formaln is a list of zero or more identifiers sep-
arated by commas. They are the formal parameters of the procedure.

• Each formal parameter is assigned the value of the corresponding actual pa-
rameter. Since mutable objects are accessed by pointer, the pointer is copied
to the formal parameter and both the formal and the actual parameters point
to the same object, which resembles call-by-reference.

• If there are more actual parameters than formal, the remaining actual param-
eters are ignored.

• If there are fewer actual parameters than formal, then the extra formal pa-
rameters are assigned the initial value &null.

• You may write a procedure to take a variable number of parameters by fol-
lowing the last formal parameter, formaln, with a pair of brackets, []. All
the actual parameters from n on will be placed in a list which will be as-
signed to formaln. (Lists are discussed in Chapter 9 on page 105.)

• The declarations allowed are local and static. See Section 2.3, Decla-
rations, on page 23.

• The initial expression is optional. It is discussed in section 5.7 on page
57

• The expression_sequence is like the expression sequence between braces,
{...}—the expressions are evaluated in sequence, each to produce a sin-

Procedures

Copyright © 1996. Thomas W. Christopher 55

gle value or to fail. Each expression is bounded: control will not backtrack
into an expression once it has produced a value.

• If control finishes executing the expression sequence and comes to the end,
the procedure call fails.

Figure 13 Bit positions in octal

procedure oct(i)
return if i = 0 then "0" else oct(i / 8) || i % 8
end
procedure main()
i := 1
while x:= read() do {
write("#define ", x, " ", oct(i))
i +:= i
}
end

5.3 Idiom: default values for parameters

You can assign default values to parameters as follows:

/ parameter_name := default_value

If the caller did not provide an actual parameter, Icon supplies &null. The /
tests the value of the parameter and succeeds only if it is &null. The &null is
replaced with the default value.

5.4 Return

A procedure returns a value by executing a return expression.

return e

or

return

The return behaves as follows:

• If the return does not include an expression e, the procedure returns
&null.

• If the return contains an expression, e, the procedure returns the value of
e to the caller.

• If the return contains an expression, e, and expression e fails, however,
the procedure call fails causing backtracking in the caller.

• The return does not create a generator. The procedure does not suspend.
It cannot be reentered to generate another value. At most one value is re-
turned.

Icon Programming Handbook

56 Copyright © 1996. Thomas W. Christopher

• If e is a variable, but not a variable declared local or static, the vari-
able is returned from the procedure. That is, you can potentially assign a val-
ue to what a procedure returns. You can use a procedure call on the left hand
side of a :=. A local variable cannot be returned because it no longer exists
after the procedure returns.

Consider the following procedure that will return the maximum of two num-
bers:

Figure 14 Maximum of two numbers

procedure max2(x,y)
x <:= y
return x
end

5.5 Fail

The fail expression

fail

causes the call of this procedure to fail. The fail will cause backtracking in
the caller.

5.6 Suspend

You use suspend to make a procedure into a generator. The suspend be-
haves like return, except that it leaves the procedure as a generator, ready to
be resumed to try to generate more values. The forms are:

suspend e1 do e2
suspend e1
suspend

• The suspend has the following behavior:

• The suspend evaluates its contained expression, e1, and passes each value
e1 generates back to the caller. It is like a return, but the procedure
doesn’t go away after returning one value.

• When the caller backs into the procedure call, control backs to the proce-
dure, executes e2 if present, and backs into the expression e1 to generate the
next value.

• When expression e1 fails to generate any more values, control falls out of
the suspend exactly like control falls out of an every. If it fails to gen-
erate any values, control moves on without delivering any values to the call-
er for this suspend.

• Without the included expression e1, suspend delivers &null back to the
caller.

Procedures

Copyright © 1996. Thomas W. Christopher 57

• If e1 is a variable, but not a variable declared local, the variable is re-
turned from the procedure. That is to say, you can potentially assign a value
to what a procedure generates. You can use a procedure call on the left hand
side of a := .

For example,

Figure 15 Demonstration of suspend

procedure G()
suspend |writes(" e1")\3 do writes(" e2")
write()
suspend |writes(" e3")\2
write()
end

procedure main()
every G() do writes(" e4")
end

writes out

 e1 e4 e2 e1 e4 e2 e1 e4 e2
 e3 e4 e3 e4

5.7 Initial

The static declaration declares variables within a procedure that retain their
values between calls. The problem, of course, arises the first time the procedure
is called: the variable has no value from before. Icon provides a way around this
problem with the initial declaration:

initial e

which comes just after the declarations at the start of the procedure and just be-
fore the expression sequence that is the body of the procedure.

The contained expression e is executed only once, the first time the procedure
is called.

The initial expression is used to initialize the static variables declared within the
procedure. It is also used to initialize some global variables shared by a collec-
tion of procedures.

Suppose you have two procedures, enqueue(x) and dequeue() that are
supposed to put items into and remove them from a shared queue implemented
as a list. They need that list initialized, so they might be written (omitting the
actual code):

Figure 16 Using initial

global queue

Icon Programming Handbook

58 Copyright © 1996. Thomas W. Christopher

procedure enqueue(x)
initial /queue:=list()
...
end
procedure dequeue()
initial /queue:=list()
...
end

Each of them checks to see if the queue has been initialized yet and initializes it
if it has not been. By using the initial expression, they avoid having to
check each time

5.8 String invocation

You can call a procedure by supplying its name in a string. For example, if you
have declared a procedure f, you can call it

"f"(x)

rather than

f(x)

However, recently Icon has been optimized to save space, so you have to tell it
to keep around the names of the functions you wish to call via their names. You
can do it in either of two ways:

1) translate it with the command

icont -fs ...

where the flag -fs says to implement strings fully, including keeping the names
of functions.

2) include invocable commands for each procedure you may call by its
string name, e.g.,

invocable "f"

at the same level in the program as global declarations, i.e., outside proce-
dures. Be sure to enclose the procedure name in quotation marks.

Or to make all procedures invocable, use

invocable all

5.9 Applying a procedure to a list

Suppose you want to apply a procedure, P, to arguments that are contained in a
list, L. Use the infix ! operator:

P ! L

Procedures

Copyright © 1996. Thomas W. Christopher 59

Operator ! takes a procedure on its left hand side and a list on its right hand side
and calls the procedure passing the arguments contained in the list. For exam-
ple, the following all call procedure P passing it a and b:

5.10 Functions that apply to procedures

There are several built-in functions that work with procedure objects. The func-
tion args reports the number of arguments that a procedure requires. The func-
tion proc will return the procedure named by a string. This may not seem
useful, given string invocation of procedures, but it will also give procedures
corresponding to operators and allow you to choose between unary and binary
or binary and ternary. In addition, there are two useful procedures in the Icon
Program Library. Procedure prockind will tell you what kind of procedure a
procedure object is. Procedure procname will return the name of a procedure.

P(a,b) P ! [a,b] "P"(a,b) "P"![a,b]

Table 10 Procedures that apply to procedures

args(p) returns the number of parameters required by procedure
p.

If p is a user procedure with a variable number of pa-
rameters, args(p) returns the negative of the number
of parameters p was declared with.

If p is a built-in procedure with a variable number of pa-
rameters, args(p) returns -1.

proc(s) returns the procedure named s, where s is a string.

proc(s,i) returns the procedure for the operator whose name is s
which takes i parameters, e.g.,
proc("*",1)(x) *x
proc("*",2)(x,y) x*y
proc("[]",2)(x,y) x[y]
proc("[:]",3)(x,y,z) x[y:z]
proc("...",2)(x,y) x to y
proc("...",3)(x,y,z) x to y by z

prockind(x) fails if x is not a procedural value. Otherwise, it returns
"c", if x is a record constructor,
"f", if x is a built-in function,
"o", if x is an operator, or
"p", if x is a user-defined function.

link prockind

Icon Programming Handbook

60 Copyright © 1996. Thomas W. Christopher

procname(x) returns the name of the procedure value x (which can
also be a record constructor or operator), or fails if x is
not a procedure. If x is an operator, its name has its
number of parameters appended on the right, e.g.

procname(write) yields "write"
procname(proc("...",3)) yields "...3"

link procname

type(p) "procedure"

Table 10 Procedures that apply to procedures

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 61

Chapter 6 Strings and Character Sets

6.1 String literals

String literals are enclosed in double quotes, ". The backslash character is the
incorporation character that is used to include quotes, backslashes and special
characters into the string.

Table 11 Representation of special characters

Character
sequence

represents

\b backspace

\d delete

\e escape

\f form feed

\l line feed

\n new line

\r return

\t tab (horizontal)

\v vertical tab

\’ single quote

\" double quote

\\ back slash

\qqq the character with the octal code qqq. qqq rep-
resents up to three octal digits. As long as the
following character is not a digit in the range 0
through 7, you may use fewer than three digits.

Icon Programming Handbook

62 Copyright © 1996. Thomas W. Christopher

If you want to continue a string literal onto another line, break it just before a
printing character. Place an underscore at the end of the first line. Continue the
literal on the second line, preceded, if you wish, by blanks and tabs For example,

"hello, _
world"

6.2 Positions in strings

The discussion in Section 2.6, Elementary strings, on page 25 was a bit simpli-
fied. The positions in a string are not the positions of characters but the positions
between characters. The leftmost end of a string is position 1. The rightmost
end’s position is the length of the string plus one.

In addition, you are permitted to use zero and negative numbers as subscripts.
Position 0 is the rightmost end of a string, -1 is the position just before the right-
most character, and minus the length of the string is the position of the left end.

For example, the positions in string "Frog" are:

6.3 Subscripting

If you subscript a string

s [i]

you select the single character substring to the right of position i. Integer i may
be positive or negative as long as its absolute value is no greater than the length

\xhh the character with the octal code hh. hh repre-
sents up to two hexadecimal digits, 0 through
9 and A through F (either upper or lower case)
representing 10 through 15. As long as the fol-
lowing character is not a hexadecimal digit,
you may use one hex digit.

\^c the control code c.

Table 11 Representation of special characters

Character
sequence

represents

" F r o g "

1 2 3 4 5

-4 -3 -2 -1 0

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 63

of the string. If i is out of range, subscripting fails. For example

You can assign to a substring of a variable. You cannot assign to a substring of
a value: s[i]:="x" is okay; "abc"[i]:="x" is not.

6.4 Sectioning: subscripting ranges

If you subscript a string with a range

s [i : j]

you select the substring from position i to position j.

• Integers i and j may be positive or negative or zero in the range—length of
the string up to length of the string plus one.

• The substring selected goes from the leftmost position to the rightmost po-
sition specified. Either i or j may specify the leftmost position. For exam-
ple, i may be less than, equal to, or greater than j.

• If i=j, then an empty substring is selected.

• You can assign to a substring of a variable. You cannot assign to a substring
of a value: s[i:j]:="x" is okay; "abcde"[i:j]:="x" is not.

• If i or j is out of range, subscripting fails.

For example

Another way to specify ranges is by specifying one position and the distance to
the other position:

s [1] selects the first character in the string (if it has at least one
character)

s [-1] selects the last character in the string (if it has at least one
character)

s [0] fails, there is no character following position 0.

s [2 : 0] selects all but the first character in the string (if it has at
least one character)

s [-1:1] selects all but the last character in the string (if it has at
least one character)

form means

s [i +: j] s [i : i + j]

s [i -: j] s [i : i - j]

Icon Programming Handbook

64 Copyright © 1996. Thomas W. Christopher

6.5 String operators

The binary string operators are concatenation and comparison.

• For the comparison operators, if one operand is a prefix of the other, the
longer is greater than the shorter.

• If an operand is not a string, it is converted to one, if possible. If not possible,
Icon causes a run-time error.

The unary operators for strings are length, generation, and random selection.

Example.

s:="abcde"
every !s:=""
write(s)

would write

bd

While

s:="abcde"
every !s:="xy"

would execute until it runs out of string space.

Table 12 String operators

operator precedence explanation

s1 || s2 7 concatenation

s1 == s2 6 equal

s1 ~== s2 6 not equal

s1 << s2 6 less than

s1 <<= s2 6 less than or equal

s1 >> s2 6 greater than

s1 >>= s2 6 greater than or equal

* s 12 length of the string

! s 12 generates the one-character sub-
strings of s, equivalent to s[1 to *s].
If s is a variable, !s generates vari-
ables.

? s 12 produces a randomly generated one
character substring of s. If s is a vari-
able, ?s is a variable.

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 65

6.6 String editing and conversion functions

Icon excels in string handling. It provides a large collection of built-in proce-
dures for string formatting and editing. In addition, several more are provided
by the Icon Program Library (indicated by "link" in their specifications).

Table 13 String editing and conversion functions

center(s,i) produces a string of length i containing
string s centered in it with blanks append-
ed to both sides to fill out the field. If
*s>i, then it returns the middle i charac-
ters of s.

center(s1,i,s2) produces a string of length i containing
string s1 centered in it with copies of
string s2 appended to both sides to fill out
the field. If *s>i, then it returns the mid-
dle i characters of s.

char(i) produces a one character string where the
single character has the internal represen-
tation given by integer i, 0≤i≤255.

compress(s,c) Let x be a character in set c. A substring
of s composed entirely of character x is
replaced with a single character x. (Char-
acter sets are presented in 6.8 on page
68.)

link strings

detab(s,i1,i2,...,in) copies string s replacing tab characters
with blanks. The integer parameters give
the tab stops. If more tab stops are need-
ed, the last interval is repeated.

entab(s,i1,i2,...,in) copies string s inserting tabs where possi-
ble. The integer parameters give the tab
stops.

image(s) produces a legible image of string s con-
tained in double quotes. Characters \ and
" are represented \\ and \". Special charac-
ters are represented in a form given in Ta-
ble 11 on page 61, but if there is no \c
representation available, then the \xhh
form is used.

Icon Programming Handbook

66 Copyright © 1996. Thomas W. Christopher

image(cs) produces a legible image of cset cs con-
tained in single quotes. Characters \ and ’
are represented \\ and \’. Special charac-
ters are represented in a form given in Ta-
ble 11 on page 61, but if there is no \c
representation available, then the \xhh
form is used. (Character sets are present-
ed in 6.8 on page 68.)

image(n) produces the string representation of
number n.

image(x) produces a legible image of object x. For
the mutable objects, the general format is
"type_num(size)", where type
identifies the type of object, num identi-
fies the particular instance of that type,
and size gives the number of elements it
contains.

left(s,i) produces a string of length i containing
string s left justified with blanks append-
ed to the right to fill out the field. If *s>i,
then it returns s[1:i+1]

left(s1,i,s2) produces a string of length i containing
string s1 left justified with copies of
string s2 appended to the right to fill out
the field. If *s>i, then it returns s[1:i+1]

map(s1,s2,s3) creates a new string which is a copy of s1
except for replacements made as follows:
It replaces each character s1[i] that occurs
in s2 at s2[j] with the character s3[j].
Strings s2 and s3 must be the same length.
If the same character occurs more than
once in s2, the rightmost occurrence de-
termines the replacement character.

mapstrs(s,l1,l2) replaces substrings. Lists l1 and l2 con-
tain strings. Each occurrence of a string
of l1 in s is replaced. An occurrence of the
ith string of l1 in s is replaced by the ith
string in l2. If l2 is shorter than l1, the
rightmost, unpaired strings in l1 are delet-
ed. In cases of overlap, the leftmost match
is preferred. If two strings match at the
same location, the longer is preferred.

link mapstrs

Table 13 String editing and conversion functions

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 67

6.7 Idiom: map

The map function

map(s1,s2,s3)

copies string s1, replacing the characters that occur in s2 with the characters at
the same positions in s3. For example, s:=map(s,"\t"," ") will replace
tabs in s1 with blanks.

A different, and often more useful way to think of this is that the characters in
s3 are placed into the form given in string s1. Characters of s3 may be moved

repl(s,i) produces a string equal to i copies of s
concatenated together

replace(s1,s2,s3) replaces all occurrences of substring s2 in
s1 by s3.

link strings

reverse(s) produces the string s reversed

right(s,i) produces a string of length i containing
string s1 right justified with blanks ap-
pended to the left to fill out the field. If
*s>i, then it returns s[-i:0]

right(s1,i,s2) produces a string of length i containing
string s1 right justified with copies of
string s2 appended to the left to fill out the
field. If *s>i, then it returns s[-i:0]

string(x) converts a number or a cset to a string.

trim(s) produces a copy of string s with trailing
blanks removed

trim(s,cs) produces a copy of string s with all the
rightmost characters that are contained in
cset cs removed. (Character sets are pre-
sented in 6.8 on page 68.)

type(x) produces a string naming the type of ob-
ject s, one of:

"integer" "real" "string"
"cset" "list"
"table" "set" "procedure"
"co-expression" "window"

or the name of a record type.

Table 13 String editing and conversion functions

Icon Programming Handbook

68 Copyright © 1996. Thomas W. Christopher

around, omitted, or have other characters inserted. For example, the keyword
&date gives the current date in the form "yyyy/mm/dd". We can put it into
the form "mm/dd/yy" as shown next. In the string "abcdefghij" charac-
ters abcd select the digits in the year, fg the month, and ij the day. Characters
e and h select the slashes. The code

write(&date)
s:=map("fg/ij/cd","abcdefghij",&date)
write(s)

wrote out

1996/02/03
02/03/96

6.8 Character sets: cset

Character sets are used with string scanning procedures. You will often want to
scan over a string of characters in a set, or up to any character in a set. You spec-
ify those character sets with the Icon cset type.

6.8.1 Character set literals

You write a character set literal surrounded by single quotation marks. Table 11
on page 61 shows the way to represent special characters in a cset literal—the
form is the same as for string literals..

6.8.2 Character-set valued keywords

Several keywords have cset values.

6.8.3 Character set operators

The cset operators are what you would expect for sets: Union, intersection,

Table 14 Keywords with cset values

&ascii produces the character set containing all ASCII characters
(128 characters).

&cset produces the character set with all characters present (256
characters).

&digits ’0123456789’

&lcase ’abcdefghijklmnopqrstuvwxyz’

&letters ’ABCDEFGHIJKLMNOPQRSTUVWXYZab_
cdefghijklmnopqrstuvwxyz’

&ucase ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 69

complement, and relative complement, plus the size operator (the unary *).

6.9 String scanning functions

String scanning functions are used to search for patterns in strings. They gener-
ally behave as follows:

• The string scanning functions in Icon have the general form

function(x,s,i,j)

where the parameters represent

x what to look for,

s string to look in,

i starting position,

j ending position.

• They succeed if they find what they are looking for. They fail if they don't.

• Some of the functions—any, bal, many, match— expect to find what
they are looking for at the starting position of the scan. If they succeed, they
return the position just beyond the string they found.

• The other functions—find and upto— hunt through the string generating
all the positions where they find what they are looking for.

• If the starting position i is to the right of position j, then the roles of i and j
are reversed, i.e. the function behaves as if it were called

Table 15 Character set operators

operator precedence explanation

~ c 12 a cset with the characters not in c

* c 12 the number of characters in the cset c

c1 ** c2 9 the intersection of character sets c1 and c2,
i.e., containing only those characters in both
c1 and c2

c1 ++ c2 8 the union of character sets c1 and c2, i.e.,
containing those characters in either c1 or
c2

c1 -- c2 8 the difference of character sets c1 and c2,
i.e., containing only those characters in c1
that are not in c2

Icon Programming Handbook

70 Copyright © 1996. Thomas W. Christopher

function(x,s,j,i).

Table 16 String scanning functions

any(c,s) returns 2 if s[1] exists and is in character set
c; otherwise it fails

any(c,s,i) returns i+1 if s[i] exists and is in character
set c; otherwise it fails

any(c,s,i,j) returns i+1 if i<j and s[i] exists and s[i] is in
character set c; otherwise it fails

bal(c1,c2,c3,s) generates the positions k in s where
1≤k<*s+1 and s[k] (if it exists) is in cset c1,
the number of characters in s[1:k] in cset c2
equals the number in c3, and there is no posi-
tion m, 1≤m≤k, where the number of charac-
ters in s[1:m] in cset c2 is less than the
number in c3.

bal(c1,c2,c3,s,i) generates the positions k in s where i≤k<*s+1
and s[k] (if it exists) is in cset c1, the number
of characters in s[i:k] in cset c2 equals the
number in c3, and there is no position m,
i≤m≤k, where the number of characters in
s[i:m] in cset c2 is less than the number in c3.

bal(c1,c2,c3,s,i,j) generates the positions k in s where i≤k<j and
s[k] (if it exists) is in cset c1, the number of
characters in s[i:k] in cset c2 equals the num-
ber in c3, and there is no position m, i≤m≤k,
where the number of characters in s[i:m] in
cset c2 is less than the number in c3.

find(s1,s2) generates the positions k in s2 from 1 to *s2-
*s1 which contain the beginning of the oc-
currences of s1, i.e., where s2[k+:*s1]==s1.
It fails if no occurrences of s1 are found.

find(s1,s2,i) generates the positions k in s2 from i to *s2-
*s1 which contain the beginning of the oc-
currences of s1, i.e., where s2[k+:*s1]==s1.
It fails if no occurrences of s1 are found.

find(s1,s2,i,j) generates the positions k in s2 from i to j-*s1
at which s1 occurs as a substring, i.e., where
s2[k+:*s1]==s1. It fails if no occurrences of
s1 are found.

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 71

many(c,s) returns the position in s following the longest
initial substring in cset c. Returns *s+1 if all
the characters are in c. Fails if the first char-
acter of s isn’t in c. (This saves you from hav-
ing to write something like: (upto(~c,s) |
(any(c,s)&*s+1)) \1.)

many(c,s,i) returns the position in s following the longest
initial substring in cset c beginning at posi-
tion i. Returns *s+1 if all the characters are in
c. Fails if s[i] isn’t in c.

many(c,s,i,j) returns the position in s following the longest
initial substring in cset c beginning at posi-
tion i and not extending beyond position j.
Returns j if all the characters are in c. Fails if
s[i] is not in c or if s[i:j] would fail (i.e., the
range is not valid).

match(s1,s2) returns *s1+1 if s2[1+:*s1] == s1; otherwise
fails

match(s1,s2,i) returns *s1+i if s2[i+:*s1] == s1; otherwise
fails

match(s1,s2,i,j) returns *s1+i if s2[i+:*s1] == s1; otherwise
fails. Requires position j to be at least *s to
the right of position i or it will fail.

segment(s,c) generates a sequence of strings which are the
longest substrings of s from left to right com-
posed solely of characters that alternatively
do or do not occur in c.

link segment

slashbal(
 c1,c2,c3,s,i,j)

like bal, but does not count a character from
c2 or c3 that is preceded by a backslash char-
acter when determining balance.

link slashbal

slshupto(c,s,i,j) like upto, but treats backslash as an incorpo-
ration character in s, preventing the position
of following character from being generated.
Parameters s, i, and j default as in the built-in
functions, but requires i≤j. (Warning: slshup-
to is reputed to have bugs.)

link slshupto

Table 16 String scanning functions

Icon Programming Handbook

72 Copyright © 1996. Thomas W. Christopher

6.10 Automatic conversions

Icon will automatically do conversions among numbers, strings, and character
sets. See Chapter 13 on page 127.

• If a number is used in a context that requires a string, it is automatically con-
verted to its string representation.

• If a string is used in a context that requires a number, it must contain a rep-
resentation of a number. It is converted to a number if possible, otherwise
there is a run-time error.

• If a character set is used in a context that requires a string, it is automatically
converted to a string. The string will have each character in the set occurring
once, sorted by their numeric representations' order.

• If a string is used in a context that requires a character set, it is automatically
converted to a character set containing all the characters that appear in the
string.

• If a number is used in a context that requires a character set, it is first con-
verted to a string and then the string is converted to a character set.

6.11 Examples of strings

6.11.1 Finding the rightmost occurrence

You can find the first occurrence of a substring using find. You can find the
last occurrence by putting the find in an every expression. In the following,
we find the position of the rightmost "." in a string:

Figure 17 Find last occurrence

#find last occurrence of "."
i:=0
every i:=find(".",s)

6.11.2 Squeezing whitespace

Suppose we wish to remove leading and trailing whitespace from a string and

upto(c,s) generates the positions in s from 1 to *s
which contain characters in set c. Fails if no
such character is found.

upto(c,s,i) generates the positions in s from position i to
*s which contain characters in set c. Fails if
no such character is found.

upto(c,s,i,j) generates the positions in s from position i to
position j which contain characters in set c.
Fails if no such character is found.

Table 16 String scanning functions

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 73

replace internal whitespace with single blanks. For our purposes, whitespace in-
cludes blanks and tabs. Here is code that will do it. First we replace tabs with
blanks; then trim blanks from the right. The third line removes initial blanks.
The fourth line repeatedly finds pairs of blanks and then replaces the longest
string of blanks it can find at that position with a single blank.

Figure 18 Squeezing whitespace

s:=map(s,"\t"," ")
s:=trim(s)
s[1:many(" ",s)] := ""
while s[i:=find(" ",s):many(" ",s,i)]:= " "

6.11.3 Converting two hex digits to a character

Here’s some code to convert a string of two hexadecimal digits to a character. If
the argument is longer than two digits, the first two digits are used. The code
uses the radix notation (see section 7.1 on page 83) to let Icon do the conversion
of the hex number to an integer.

Figure 19 Converting two hex digits to a character

#hex to char
procedure hexToChar(h)
return char(integer("16r"||(h[1:3]|h)))
end

6.11.4 Converting a character to two hex digits

Here is code to convert a character to a pair of hexadecimal digits:

Figure 20 Converting a character to two hex digits

#char to hex
procedure charToHex(c)
local n
static hex
initial hex:= "0123456789ABCDEF"
n:=ord(c)
return hex[n/16+1]||hex[n%16+1]
end

6.11.5 Removing backspaces

Here is code to copy its input into its output, removing backspaces and the char-
acter preceding them. A backspace at the beginning of a line is simply left there.

Figure 21 Removing backspaces

#remove backspaces
procedure main()
while s:=read() do {

while i:=find("\b",s,2) & s[i-1+:2] := ""
write(s)

}

Icon Programming Handbook

74 Copyright © 1996. Thomas W. Christopher

end

6.11.6 Generating character set tests for C

One great use for Icon is writing little tools to help with programming in other
languages. Here is a subroutine to write out a C procedure to test whether a char-
acter is in a character set. It is given the name for the test procedure, the charac-
ter set, and the number of bits in an unsigned integer for the destination system.

Figure 22 Generating character set tests for C

#gen C char set tests
procedure csetTestInC(name,cs,bitsPerInt)
local a, i, j, m, n, numPerLine
numPerLine := 4
m:=(256+bitsPerInt-1)/bitsPerInt
a:=list(m,0)
every c:=!cs & n:=ord(c) & i:=n/bitsPerInt &
j:=n%bitsPerInt do

a[i+1]:=ior(a[i+1],ishift(1,j))
write("unsigned int ",name,"(int c) {")
write(" static unsigned int a[]={")
j:= numPerLine
every i:=1 to m-1 do {

writes(a[i],",")
j-:=1
if j=0 then {write(); j:= numPerLine }

}
write(a[-1],"};")
write("return ((a[c/",bitsPerInt,"]>>(c%",bitsPer-
Int,"))&1);\n}")
end

The call

csetTestInC("letter",&letters,16)

will write out

unsigned int letter(int c) {
 static unsigned int a[]={
0,0,0,0,
65534,2047,65534,2047,
0,0,0,0,
0,0,0,0};
return ((a[c/16]>>(c%16))&1);
}

6.11.7 Generate identifiers

Here is a procedure to generate all the identifiers in a string.

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 75

Figure 23 ident: Generating identifiers

#generate identifiers in string
procedure idents(s)
local i, j, initIdChars, idChars
initIdChars := &letters++’_’
idChars := initIdChars++&digits
i := 1
while j := upto(initIdChars,s,i) &

not any(idChars,s[j-1]) &
k := many(idChars,s,j) do {

suspend s[j:k]
i:=k

}
end

Notice that we need to check that the character preceding the identifier could
not itself be part of an identifier. When you have to do such checks, you might
wish to consult the file lastc.icn in the Icon Program Library which has a routine
to do such checks. It also has a routine to generate positions in a string of a spec-
ified substring delimited by characters from a specified set.

6.11.8 Primes sieve

Here is a program to write out the primes up to 1000 using the Sieve of Era-
tosthenes. Compare it to Figure 26 on page 87 which shows the same algorithm
using bit operations.

Figure 24 Primes sieve using strings

procedure main()
local p,i,j,n
n:=1000
p:=repl("1",n)
every i:=2 to sqrt(n) do

if p[i] =="1" then
every j:= i+i to n by i do p[j]:="0"

every i:=2 to n do if p[i]=="1" then write(i)
end

6.12 Scanning Strings

6.12.1 Scanning

The functions any, many, match, find, and upto as presented in section 6.9
on page 69 are inconvenient to use. They require you name the string over and
over again, although you are probably looking through only a single string at a
time. They also require you to use integer variables to keep track of your posi-
tion in the string, although each match typically starts where the previous one
left off.

Icon allows you to get around these annoyances. It allows you to announce at a
beginning of an expression what string you will be scanning and it keeps track

Icon Programming Handbook

76 Copyright © 1996. Thomas W. Christopher

of the position in that string for you.

You specify which string you will be scanning with the binary ? operator.

s ? e

means that within expression e you will be scanning the string s. You almost
always need to follow the question mark by an expression sequence in braces.

The way Icon remembers which string you are scanning is by assigning it to
keyword &subject. It remembers where you are in the string in the keyword
&pos.

When you use the scanning operation s?e, Icon

• evaluates s

• saves the previous values of &subject and &pos

• assigns the value of s to &subject and the number 1 to &pos

• evaluates e

• restores the old values of &subject and &pos

• yields the value of e as the value of the scanning expression

Of course, backtracking into e will reestablish the values of &subject and
&pos to continue the scan. Backtracking out of e will reestablish the values of
&subject and &pos outside of the scanning expression and will backtrack
into s to generate more strings to scan.

6.12.2 Functions tab and move

Although you can assign to &pos, the typical way of changing it is through the
functions tab and move. Procedure tab sets &pos to an absolute position in
&subject; move assigns &pos a position relative to its current value. Both
procedures return the substring that &pos moved past, i.e., between its initial
and final positions.

Procedure tab is used with the string scanning functions as described in the
next section.

6.12.3 String scanning functions revisited

The string search functions described above in section 6.9 on page 69 will scan
&subject from position &pos up to the end of the string if you do not specify
any other string or position. That is to say, if you do not specify some other
string:

they will search string &subject

they will start their operation at &pos

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 77

they will search the entire rest of &subject to the right of &pos

if they are successful, they return a new position just following what they
scanned past.

you use tab to move &pos past the string that was scanned.

6.12.4 Matching a string, = e

The unary = operator tests to see if its operand string occurs next in the &sub-
ject string and moves &pos past it if it does, i.e.,

Table 17 String scanning, revisited

any(c) any(c,&subject,&pos,0)

bal(c1,c2,c3) bal(c1,c2,c3,&subject,&pos,0)

find(s1) find(s1,&subject,&pos,0)

many(c) many(c,&subject,&pos,0)

match(s1) match(s1,&subject,&pos,0)

move(i) moves &pos to position &pos+i in &subject
and returns the substring between the original po-
sition of &pos and its new position. The new po-
sition can be zero or negative, but &pos is kept as
a positive number. The assignment to &pos is re-
versible: when move is resumed during backtrack-
ing, &pos will be set back to its original position
before the move.

slashbal(
 c1,c2,c3)

slashbal(c1,c2,c3,&sub-
ject,&pos,0)

link slashbal

slshupto(c) slshupto(c,&subject,&pos,0)

link slshupto

tab(i) moves &pos to position i in &subject and re-
turns the substring between the original position of
&pos and its new position. Position i can be zero
or negative, but &pos is kept as a positive number.
The assignment to &pos is reversible: when re-
sumed during backtracking, &pos will be set back
to its original position before the tab.

upto(c) upto(c,&subject,&pos,0)

Icon Programming Handbook

78 Copyright © 1996. Thomas W. Christopher

= e

is equivalent to

tab(match(e))

6.12.5 Scanning with assignment, ?:=

The scanning operator can be combined with assignment.

v ?:= e

initialized &subject and &pos from the string value of v. Expression e scans
&subject. The value e produces is assigned to v.

You will often use this operator to replace a pattern in the middle of a string.
Your code will probably look like this:

v ?:= tab over prefix ||
(tab over pattern , replacement string) ||
tab(0)

6.12.6 Testing &pos, pos(i)

The procedure pos(i) succeeds if &pos is at position i in &subject. Al-
though you could test &pos=i, that will only work for positive values of i.
Procedure pos also allows zero and negative positions to be specified, so the
most common use is pos(0) to see if the entire string has been scanned.

6.12.7 Example

Here’s a version of the idents procedure using string scanning operations:

Figure 25 idents with ? and tab

#generate identifiers in string
procedure idents(s)
local i, j, initIdChars, idChars
initIdChars := &letters++’_’
idChars := initIdChars++&digits
s ? suspend tab(upto(initIdChars)) &

pos(1) | (move(-1),tab(any(~idChars))) &
 tab(many(idChars))

end

6.13 Regular expressions

Regular expressions are a way to express lexical patterns, e.g. numbers, identi-
fiers, operators, and punctuation. UNIX software such as LEX and EGREP use
a form of regular expressions for pattern matching.

The Icon Program Library provides two modules that deal with regular expres-
sions: findre.icn and regexp.icn.

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 79

6.13.1 findre

File findre.icn defines one procedure,

findre(re,s,i,j)

where re is a string containing the regular expression, and s, i, and j are as usual.
To use it, be sure to include link findre. Most characters in the regular ex-
pression represent themselves, but some have special meanings:

As with find, findre is a generator, generating the leftmost positions at which the
regular expression matches. The position to the right of the matching expression
is assigned to global variable __endpoint, to which you can tab to get past
the expression.

Table 18 Regular expression special characters

. matches any single character.

+ matches one or more occurrences of the preceding element, e.g. a+
matches one or more a’s.

* matches zero or more occurrences of the preceding element, e.g. a*
matches zero or more a’s. Procedure findre uses a shortest match first
algorithm, so * will first match zero occurrences of the preceding
pattern.

() Groups the regular expression within the parentheses into a single el-
ement, usually for a following * or +.

\ incorporates the following character, removing its special meaning,
e.g. \+ matches a single + character; \++ matches one or more +’s.

| separates alternatives, e.g. (0|1)+ matches a nonempty string of ze-
ros and ones.

[] Matches any one of the characters listed between the brackets, e.g.
[0123456789] matches any digit.

^ At the beginning of a regular expression, ^ forces the expression to
match at the beginning of the string. At the beginning of a character
set, i.e. just following the [, it causes the set to be complement of the
following characters, e.g. [^0123456789] matches any character
except a digit.

$ At the end of a regular expression, $ matches only at the end of the
line.

Icon Programming Handbook

80 Copyright © 1996. Thomas W. Christopher

6.13.2 regexpr

File regexpr.icn contains three procedures of significance, shown in Table 19.

The components of a regular expression used by module regexp are a superset
of those provided by findre.

Table 19 Procedures in regexpr.icn.

ReMatch(re,s,i1,i2) generates the positions in s following occur-
rences of regular expression re beginning at
i1. Regular expression re can be a string
representation of a regular expression, or a
list representation created by procedure
RePat(s).

link regexp

ReFind(re,s,i1,i2) generates the positions in s of occurrences of
regular expression re. The positions gener-
ated will be the leftmost positions of the
matching strings. Regular expression re can
be a string representation of a regular expres-
sion, or a list representation created by pro-
cedure RePat(s).

link regexp

RePat(s) translates a string representation of a regular
expression into a list representation. If you
are going to use the same expression repeat-
edly, it is best to translate it with RePat
once rather than having ReMatch or
ReFind translate the string representation
repeatedly.

link regexp

Table 20 Regexp special characters.

. matches any single character.

+ matches one or more occurrences of the preceding element, e.g.
a+ matches one or more a’s.

* matches zero or more occurrences of the preceding element, e.g.
a* matches zero or more a’s. Module regexp by default uses a
leftmost longest match first algorithm, so * will first match as
many occurrences of the preceding pattern as it can.

? matches zero or one occurrence of the preceding element.

Strings and Character Sets

Copyright © 1996. Thomas W. Christopher 81

() Groups the regular expression within the parentheses into a single
element, usually for a following * or +.

\ incorporates the following character, removing its special mean-
ing, e.g. \+ matches a single + character; \++ matches one or
more +’s.

| separates alternatives, e.g. (0|1)+ matches a nonempty string of
zeros and ones.

[] Matches any one of the characters listed between the brackets, e.g.
[0123456789] matches any digit.

- between two characters within a character set, - indicates all the
ASCII character sequence, e.g. [0-9] represents any digit,
[A-Za-z0-9_] represents any character that can occur in an
Icon identifier.

^ At the beginning of a regular expression, ^ forces the expression
to match at the beginning of the string. At the beginning of a char-
acter set, i.e. just following the [, it causes the set to be comple-
ment of the following characters, e.g. [^0123456789]
matches any character except a digit.

$ At the end of a regular expression, $ matches only at the end of
the line.

{N} where N is a number matches exactly N occurrences of the preced-
ing element.

{N,} where N is a number matches N or more occurrences of the pre-
ceding element.

{M,N} where M and N are numbers, matches no fewer than M and no
more than N occurrences of the preceding element.

\N where N is a single digit from one to nine, matches the same string
that a preceding parenthesized subexpression matched. The pa-
renthesized expression selected is the one beginning with the Nth
"(" counting from the left.

\w matches any character that can occur in an Icon identifier, i.e.
&letters ++ &digits ++ ’_’ .

\W matches any character not matched by \w .

\b matches at a word boundary, i.e. between a character in \w and
\W, in either order.

\B matches anywhere \b does not, i.e. within strings of \w or \W
characters.

Table 20 Regexp special characters.

Icon Programming Handbook

82 Copyright © 1996. Thomas W. Christopher

\s matches any whitespace character.

\S matches any character that isn’t whitespace.

\d matches any digit, i.e. is equivalent to [0-9].

\D matches any non-digit, i.e. is equivalent to [^0-9].

Table 20 Regexp special characters.

Arithmetic

Copyright © 1996. Thomas W. Christopher 83

Chapter 7 Arithmetic

Like most languages, Icon provides both integer and real data types. Unlike
most languages, Icon provides integers of unbounded precision.

7.1 Numeric literals

Integer literals (constants) can be written in either decimal or radix format. A
decimal literal is written just as a string of digits, e.g.,

1066
0
025

A radix literal can be used to write an octal constant, or hexadecimal, or any ra-
dix from 2 to 36. It is written as the radix, in decimal, followed by the letter R
(in either upper or lower case) followed by a string of digits and letters that spec-
ifies its digits. The letter A represents 10; B, 11; all the way to Z, 35. Upper and
lower case letters are considered the same. For example,

8r31
16R19
30rP
2r11001

Notice that there are no negative integer literals. If you write something like
-10, you are really applying the - operator to the literal 10.

Real literals are written in decimal using either decimal point or an exponent or
both, e.g.,

25.0
25e0
2.5E+1
250e-1

Real literals are generally of the form given by the following grammar:

real_literal = digits “.” [digits] [(“e”|”E”)[“ -”|”+”] digits.

digits = digit {digits}.

digit = “0”|”1”|”2”|”3”|”4”|”5”|”6”|”7”|”8”|”9”.

Icon Programming Handbook

84 Copyright © 1996. Thomas W. Christopher

Note: The grammar is not part of Icon; it is used to describe Icon. In the gram-
mar, all literal characters are quoted. The equal sign defines the name on its left
hand side to match the pattern on its right. The vertical bar separates alterna-
tives. Parentheses’ group alternatives. Brackets enclose things that may or may
not be present. Braces enclose things that may be present any number of times
or may be absent entirely.

In a recent version of Icon, real literals were allowed to begin with a decimal
point rather than a digit. In previous versions, they were not. Now one-half can
be written .5 rather than 0.5.

7.2 Operators

Icon provides the normal arithmetic operators.

Of the binary operators, exponentiation (^) is performed before multiplication,
division, and remainder (*, /, %), which are performed before addition and sub-
traction (+ and -).

A binary operation is performed in real arithmetic if either operand is real. If
both operands are integer, it is performed as an integer operation.

Exponentiation associates to the right while the other binary operators associate
to the left. It makes more sense that way: 3^3^3 = 3^(3^3) = 3^27
=7625597484987. If it associated to the left, it would yield (3^3)^3 = 3^(3*3) =
3^9 = 19683.

You can use a string as an operand: it will automatically be converted to the
number it represents. If the string does not represent a number, the program will
stop and write out an error message. (Icon can convert negative numbers.)

There is a random number generator operator, ?. When applied to a positive in-
teger n, ?n produces a randomly chosen integer in the range 1 to n. When ap-
plied to zero, it produces a random real in the range 0.0 to 1.0.

Table 21 Arithmetic operators

operator precedence explanation

+ x 12 numeric value. If x is a number, it is left unal-
tered. If it is the string representation of a num-
ber, it is converted to the corresponding
number.

- x 12 negative

? i 12 produces a random integer in the range 1 to i if
i is an integer greater than zero.

produces a random real number in the range
0.0 to 1.0 if i = 0.

e1 ^ e2 10 exponentiation. Right associative.

Arithmetic

Copyright © 1996. Thomas W. Christopher 85

All binary operators (except assignment itself) can be combined with the assign-
ment operator in the form

op:=

to perform the operation on the left and right operands and assign the result to
the left. The most common use, no doubt, is

i +:= 1

which increments variable i.

7.3 Large integers

Icon allows integers to be arbitrarily large, but it uses a more efficient represen-
tation for standard sized integers up to the wordsize of the computer. There are
a few problems with large integers:

• to and seq do not work with large integers.

• large integer literals are converted from character strings when they are en-
countered in the program. You should avoid writing them in loops.

• Converting large integers to character strings can take a long time.

• Not all Icon implementations provide large integers.

If you want to test whether an integer, i, is a large integer, do the following:

• include in your program

link large

• call

large(i)

e1 * e2 9 multiplication

e1 / e2 9 division

e1 % e2 9 remainder. The sign of result is the sign of e1.
This operation works for both integer and real.
For real operands, e1%e2=e1-integer(e1/
e2)*e2.

e1 + e2 8 addition

e1 - e2 8 subtraction

Table 21 Arithmetic operators

operator precedence explanation

Icon Programming Handbook

86 Copyright © 1996. Thomas W. Christopher

which returns the value of i if i is a large integer and fails if i is not.

7.4 Conversion functions

There are four built in functions that convert values to an integer or real:

The integer, real, and numeric functions will fail if their operands cannot be
converted. The program can catch the failure and take some appropriate action.
If you just pass the operand to an arithmetic operator and it cannot be converted,
the program will terminate with an error message.

There are several more conversion functions available in the Icon Program Li-
brary to convert reals to integers. To use them, include the linkage declaration

link real2int

7.5 Bitwise operations on integers

Integers are represented as bit strings. If you number the bits from 0 at the right,
bit number i contributes 2i to the value of the integer. In twos-complement rep-
resentation, the leftmost bit in the n-bit number contributes not 2n-1 but its neg-
ative, -2n-1. Icon provides a collection of functions to perform the usual bit-by-

Table 22 Built-in number conversion

numeric(x) will convert a string representation of a number to the
numeric representation. It will leave a number unaltered.
It will fail if the conversion is not possible.

integer(x) will convert a real to an integer, or a string representation
of a number to an integer. Even if x is a string represen-
tation of a real, it will be converted to an integer. An in-
teger is left unaltered. It will fail if the conversion is not
possible.

real(x) converts to a real, but is like integer(x) otherwise. It will
fail if the conversion is not possible.

ord(s) takes a one character long string and converts the char-
acter to the integer that represents it in the character set.
For example, in ASCII, ord("A") = 65.

Table 23 Other conversions from real to integer

ceil(r) nearest integer to r away from 0

floor(r) nearest integer to r toward 0

round(r) nearest integer to r

sign(r) sign of r: -1 if r is negative, 0 if r is 0, 1 if r is positive.

trunc(r) nearest integer less than r

Arithmetic

Copyright © 1996. Thomas W. Christopher 87

bit operations on integers. In other languages these operations would be used to
represent sets, but Icon provides a more convenient set data type, see Chapter
11 on page 117.

Example. Here is a program to compute primes by the "sieve of Eratosthenes."
We set the bits in a long integer to represent their bit positions being potential
primes. (That is, we use the integer as a bit set.) Starting at 2, we examine bits.
If bit, i, is set (tested by iand(p,ishift(1,i))~=0), it represents a prime.
We go through all multiples of that prime (j:= i+i to n by i) clearing
those bits, since those bits obviously represent composite numbers.

Figure 26 Prime sieve using bits

procedure main()
local p,i,j,n
n:=1000
p:=icom(0)

every i:=2 to sqrt(n) &
 iand(p,ishift(1,i))~=0 &

 j:= i+i to n by i do
p:=iand(p,icom(ishift(1,j)))

every i:=2 to n do if iand(p,ishift(1,i))~=0 then
write(i)
end

7.6 Numeric functions

Icon provides the common trigonometric and log functions. Note that Icon ex-
presses angles in radians, rather than degrees. It provides conversion functions,
dtor and rtod, to convert degrees to radians or vice versa. Hyperbolic functions

Table 24 Bitwise operators

iand(i,j) bitwise and: a bit is set in the integer result only if it is
set in both i and j.

icom(i) bitwise complement: a bit is set in the integer result if
and only if it is not set in i.

ior(i,j) bitwise or: a bit is set in the integer result if it is set in
either i or j.

ishift(i,j) shift the bits in i by j positions to the left (if j>0) or |j| to
the right (j<0), filling with zeros.

ixor(i,j) bitwise exclusive or: a bit is set in the integer result only
if it is set in one or the other but not both of i and j.

Icon Programming Handbook

88 Copyright © 1996. Thomas W. Christopher

are available in the IPL file hyperbol.icn.

Table 25 Trig. and numeric functions and keywords

abs(r) absolute value

acos(r) arc cosine in radians, -1 ≤ r ≤ 1.

asin(r) arc sine in radians, -1 ≤ r ≤ 1.

atan(r1,r2) arc tangent of r1/r2 in radians with the sign of r1.

atan(r) arc tangent of r in radians.

cos(r) cosine of r (given in radians)

cosh(r) hyperbolic cosine.

link hyperbol

dtor(r) degrees to radians

&e The base of the natural logarithms. Approximately
2.71828182845904

exp(r) er, or in Icon, &e^(r)

log(r1,r2) logarithm of r1 to the base r2

log(r) loge r

&phi phi, the "golden ratio." Approximately 1.61803 = a/b
where a/b=(a+b)/a

&pi π, approximately 3.14159265358979

&random The seed of the random sequence. You can assign a new
value to it.

rtod(r) convert radians to degrees

sin(r) sine of r (given in radians)

sinh(r) hyperbolic sine.

link hyperbol

sqrt(r) square root of real r ≥ 0.

tan(r) tangent of r (given in radians)

tanh(r) hyperbolic tangent.

link hyperbol

Arithmetic

Copyright © 1996. Thomas W. Christopher 89

7.7 Complex

Complex numbers are not built in to Icon, but are provided in the IPL file com-
plex.icn, which is to say, if you want to use them, include

link complex

in your program. The complex numbers are represented internally as records of
type

record complex(rpart,ipart)

The string representation of complex numbers is given by the grammar:

["+" | "-"] number ("+" | "-") number "i"

which is to say, a complex number is an optional plus or minus sign, followed
by a number, followed by a plus or minus sign, followed by another number,
followed by the letter "i".

The procedures to perform operations on complex numbers are as follows:

7.8 Rational numbers

The Icon Program Library contains a package to manipulate rational numbers,
i.e. numbers that are expressed as the ratio of two integers. Internally, the ratio-
nal numbers are represented as records:

record rational(numer,denom,sign)

To use rational numbers, you will need to include the linkage declaration:

link rational

Table 26 Complex arithmetic procedures.

complex(r,i) create complex number with real part r and imaginary
part i

cpxadd(x1,x2) add complex numbers x1 and x2

cpxdiv(x1,x2) divide complex number x1 by complex number x2

cpxmul(x1,x2) multiply complex number x1 by complex number x2

cpxsub(x1,x2) subtract complex number x2 from complex number
x1

cpxstr(x) convert complex number x to string representation

strcpx(s) convert string representation s of a complex number
to it’s internal representation

Icon Programming Handbook

90 Copyright © 1996. Thomas W. Christopher

The available procedures are:

The rational number package itself links to gcd.icn for a greatest common divi-
sor routine. Routines find the greatest common divisor and the least common
multiple are available in gcdlcm.icn.

7.9 Random numbers

Icon has a built-in random number generator accessed by the unary question
mark operator.

The ? operator is not a generator. It will not generate another random number
when backed into. For that you can use |?n or some procedures in the IPL.

The "seed" for the random number generator is the value of the keyword &ran-
dom. Keyword &random will change after each application of the ? operator. It
is the value of &random in its range (zero through some large value) that is con-
verted into a random value returned by ?. Keyword &random starts at zero each
program execution, but it can be assigned other values to avoid having all exe-
cutions use the same sequence of pseudo-random values.

Table 27 Rational arithmetic procedures.

str2rat(s) Convert the string representation of a rational num-
ber (such as "3/2") to a rational number.

rat2str(r) Convert the rational number r to its string represen-
tation.

addrat(r1,r2) Add rational numbers: r1+r2.

subrat(r1,r2) Subtract rational numbers: r1 - r2.

mpyrat(r1,r2) Multiply rational numbers: r1 * r2.

divrat(r1,r2) Divide rational numbers: r1 / r2.

negrat(r) Negate a rational number: -r.

reciprat(r) Get the reciprocal of rational number: 1/r.

Table 28 The random number generator, ? n.

? 0 yields a random real number in the range 0.0 ≤ ?0 < 1.0.

? n yields a random integer in the range 1 ≤ ?n ≤ n, for integer n>0.

? x yields a randomly chosen element from a structure, e.g. string or
list.

Arithmetic

Copyright © 1996. Thomas W. Christopher 91

There are a number of files in the IPL that relate to random number generation.

You may wish to consult the following files in the IPL as well:

• File random.icn contains Icon code to perform the same functions as the
built-in random number generator as well as to use different parameters.

• File lcseval.icn contains a procedure to evaluate parameters for con-
gruential random number generators.

7.10 Matrices

Icon does not have multi-dimensional arrays or matrices built in. They are built
using lists, see Chapter 9 on page 105. You can use the syntax A[i,j] instead of
A[i][j] to subscript two levels of lists, which gives the feel of matrices.

Table 29 Random number packages in the IPL.

procedure description

gauss() returns a random number chosen from a gaus-
sian distribution with a mean of zero

link gauss

gauss_random(x,f) returns a random number chosen from a gaus-
sian distribution with a mean of x. Larger val-
ues of parameter f will flatten the distribution.

link gauss

randomize() a procedure to set the seed of the random
number generator to a value determined in
part from the date and time. You can use this
to avoid always generating the same sequence
of random numbers each time the program is
run.

link randomiz

randreal(low,high) returns a random real number, r, in the range
 low ≤ r < high.

link randreal

ranseq(seed) generates the values of &random starting at
seed.

link randseq

ranrange(min, max) returns a random integer in the range min to
max, inclusive.

link ranrange

Icon Programming Handbook

92 Copyright © 1996. Thomas W. Christopher

The Icon Program Library does provide some matrix and linear algebra proce-
dures. See matrix.icn and lu.icn in the Icon Program Library.

I/O

Copyright © 1996. Thomas W. Christopher 93

Chapter 8 I/O

8.1 File I/O

Values of type file represent open files on which the program can read and
write. The program starts execution with three open files: &input, &output,
and &errout. Unless another file is specified, read functions read from &in-
put, write functions write to &output, and error messages go to &errout.

To open a new file for input or output, you call the procedure open which will
return a file object that you pass to read or write to tell it which file to access,
e.g.,

f:=open("x.txt","r")|
 stop("cannot open x.txt")

The open will fail if the file can’t be opened for reading. This code tests for fail-
ure and terminates execution with a message if it fails.

File names follow conventions of the operating system Icon is running on. How-
ever, Version 9 for MSDOS allows UNIX path specifications, i.e., using "/"
rather than "\".

File I/O in Icon is based on UNIX. In UNIX a file may be opened for reading or
writing. When opened for writing, the file position may be set at the beginning,
which would replace the contents, or at the end for appending. The open may
specify that the file be created, which requires the file not already exist. (Unless
you’re the superuser, but that’s another matter.)

In UNIX, lines of text files are terminated by a newline character. When Icon
reads a line (function read) it strips the newline character off the end and re-
turns the line as a string. Function reads, however, will return the newline
character like any other. When Icon is running on some other system, the open
function by default specifies that that system’s newline conventions be translat-
ed into UNIX’s, for example, translating carriage return/line feed sequences into
new lines. To read binary files, you must specify the "u" option to tell open
not to mess with the actual bytes, e.g.,

open(filename,"ru")

In addition to the built-in functions and procedures, the Icon Program Library
provides several useful procedures for file I/O. They will be indicated, as al-

Icon Programming Handbook

94 Copyright © 1996. Thomas W. Christopher

ways, with a link command that needs to be used to access them.

Table 30 Operations and functions on files

! f generates the lines of file f. Fails on end of
file.

close(f) closes the file bound to file object f.

display(i,f) writes to file f the names of the i most recently
called active procedures, their local variables, and
the global variables. Used for debugging.

display(i) writes to &errout the names of the i most recently
called active procedures, their local variables, and
the global variables. Used for debugging.

display() writes to &errout the names of all the active pro-
cedures, their local variables, and the global vari-
ables. Used for debugging.

dopen(s) opens the file named s using default op-
tions (i.e. open(s,"rt")). If the file is
not found in the current directory, all the
directories whose paths are listed in envi-
ronment variable DPATH are tried, left to
right until the file can be successfully
opened. The paths in DPATH are separated
from each other with blanks; the directo-
ries within the paths are separated by "/"
characters.

link dopen

&errout the standard error output file. (It is not a
variable; it cannot be reassigned.)

flush(f) Output is typically buffered before being
written. flush(f) flushes (actually
writes out) the buffers for file f.

&input the standard input file. (It is not a variable;
it cannot be reassigned.)

I/O

Copyright © 1996. Thomas W. Christopher 95

open(s1,s2) opens the file named by string s1 for ac-
cess in the mode described by string s2
and returns a file object that represented it,
or fails if it cannot be opened. The modes
are indicated by letters:

• "a"—open in append mode for writ-
ing

• "b"—open for both reading and writ-
ing

• "c"—create

• "r"—open for reading (default)

• "w"—open for writing

• "t"—translate line terminations into
linefeed characters (default)

• "u"—do not translate line termina-
tions to linefeed characters (use this for
binary files)

• "p"—create a process to execute com-
mand line s1 and attach it as a pipe to
the current process. With "pr", the cur-
rent process can read the standard out-
put of the created process; with "pw",
the lines the current process writes to
the file can be read by the created pro-
cess as its standard input.

open(s,"pr") forks a process which executes the com-
mand line contained in string s and returns
a file (bound to a pipe) from which the out-
put of the forked process may be read. If
your system doesn’t have pipes, use
popen.icn in the IPL.

open(s,"pw") forks a process which executes the com-
mand line contained in string s and returns
a file. Lines written to the file are piped as
standard to the forked process. If your sys-
tem doesn’t have pipes, use popen.icn
in the IPL.

open(s1) is equivalent to open(s1,"rt")

Table 30 Operations and functions on files

Icon Programming Handbook

96 Copyright © 1996. Thomas W. Christopher

&output the standard output file. (It is not a vari-
able; it cannot be reassigned.)

pclose(file) closes the pipe bound to file, which was
opened by popen().

link popen

popen(s1,s2) equivalent to open(s1,"p"||s2)on
systems with pipes. On systems without
pipes, it will use the system() function
and a temporary file to simulate a pipe.
However, the command given in s1 will
not run concurrently with the current pro-
cess. (If you use popen(s1, "w"), you
must use pclose(file) to actually
have the command s1 execute.)

link popen

read() reads and returns as a string the next line
from the standard input file (&input), but
fails on end of file. read strips off the ter-
minating newline character from the line it
returns.

read(f) reads and returns as a string the next line
from the file, f, but fails on end of file.
read strips off the terminating newline
character from the line it returns.

reads() reads and returns as a string the next char-
acter from the standard input file (&in-
put), but fails on end of file.

reads(f) reads and returns as a string the next char-
acter from the file, f, but fails on end of
file.

reads(f,i) reads and returns as a string the next i char-
acters from the file, f. Fails on end of file.
Returns fewer than i characters if only that
many remain.

save(s) saves the currently executing program as
file s and returns the size of the file created.
When executed, the program will resume
executing by returning from the save. Not
available on all systems.

Table 30 Operations and functions on files

I/O

Copyright © 1996. Thomas W. Christopher 97

seek(f,i) seeks to position i in file f so that subse-
quent reads or writes will start at the i-th
byte. Fails if the seek cannot be done. As in
Icon strings, the first byte in the file is at
position 1, and the last byte is indicated by
position 0.

stop(x1,x2,...) writes out the values x1,x2,... left-to-
right to the error output, &errout, and
exits with an error status. If any xi is a file,
subsequent output is to that file.

where(f) returns the current file position, most likely
for use with seek later.

write(x1,x2,...,xn) writes out the values x1,x2,... left-to-
right to the standard output, and follows
them with a line termination. If any xi is a
file, the following values are written to that
file until the file is changed again or the
end of the write procedure. If any xi is
neither a file nor a string and cannot be
converted to a string, write terminates
program execution with an error. Returns
xn.

writes(x1,x2,...,xn) writes out the values x1,x2,... left-to-
right to the standard output. It does not fol-
low them with a line termination. If any xi
is a file, the following values are written to
that file until the file is changed again or
the end of the write procedure. If any xi is
neither a file nor a string and cannot be
converted to a string, writes terminates
program execution with an error. Returns
xn.

Table 30 Operations and functions on files

Icon Programming Handbook

98 Copyright © 1996. Thomas W. Christopher

8.2 File names and paths

Full file names in most systems are called "paths" since they represent a path
through the hierarchical directory system. E.g.

D:\IPL\PROCS\BASENAME.ICN

Moreover file names proper are usually divided into a base name and an exten-
sion (e.g. basename.icn). The Icon Program Library has several procedures to

xdecode(f)
xdecode(f,p)

reads, reconstructs, and returns the Icon
data structure from file f that was previ-
ously saved there by xencode. Files, co-ex-
pressions, and windows are decoded as
empty lists (except for files &input,
&output, and &errout). Fails if the file
is not in xcode format or if it contains an
undeclared record.

If p is provided, xdecode reads the lines by
calling p(f) rather than read(f). See
xencode for an idea of what to use this
for.

link xcode

xdecoden(x,fn) like xdecode, except that fn is the name
of a file to be opened for input (with
open(fn)).

link xcode

xencode(x,f)
xencode(x,f,p)

encodes and writes the data structure x into
file f. The data structure can be read back
in by xdecode. If parameter p is provid-
ed, it is called in place of write, i.e.
p(f,...) instead of write(f,...),
in which case f need not be a file, e.g.
 xencode(x,L:=[],put)
will encode the data structure into a list, L.

link xcode

xencoden(x,fn,opt) like xencode, except that fn is the name
of a file to be opened for output (with
open(fn, opt)). The options, opt,
default to "w".

link xcode

Table 30 Operations and functions on files

I/O

Copyright © 1996. Thomas W. Christopher 99

break out the components of a file name.

Table 31 File names and paths: IPL procedures.

basename(path,
 suffix)

returns the base name of the file indicated by
path. The suffix string is removed from
the right. E.g.
 basename("D:\IPL\PROCS\BALQ.ICN",
 ".ICN")
returns "BALQ". Works for UNIX, MSDOS,
and MACs.

link basename

components(s,sep)

components(s)

returns a list of the components of the path s,
where the components of the path are separated
by the character sep. The separator defaults to
"/" which is appropriate for UNIX. E.g.
 components("/a/b/c.d")
returns
 ["/","a","b","c.d"]
link filename

dpath(s) returns the path for the file whose file name is
s. If the file is not found in the current directo-
ry, all the directories whose paths are listed in
environment variable DPATH are tried, left to
right until the file can be successfully opened.
The paths in DPATH are separated from each
other with blanks; the directories within the
paths are separated by "/" characters. (Icon on
MSDOS allows "/" rather than "\" in paths.)
Procedure dpath returns

• s, if the file is found in the current directo-
ry.

• path || "/" || s , if the file is found
at path within DPATH.

link dpath or
link dopen

See also: pathfind.

getpaths(p1,
 p2,...,pn)

generates p1, p2, ..., pn followed by all the
paths in the PATH environment variable. This
will work for both UNIX and MSDOS, choos-
ing the correct PATH syntax for each.

Icon Programming Handbook

100 Copyright © 1996. Thomas W. Christopher

pathfind(s,p) returns the path for the file whose file name is
s. If the file is not found in the current directo-
ry, all the directories whose paths are listed in
string p are examined, left to right. If p is &null
(i.e. not specified), the paths in environment
variable DPATH are tried, left to right until the
file can be successfully opened. The paths in p
and DPATH are separated from each other with
blanks; the directories within the paths are sep-
arated by "/" characters. (Icon on MSDOS al-
lows "/" rather than "\" in paths.) Procedure
dpath returns

• s, if the file is found in the current directo-
ry.

• path || "/" || s , if the file is found
at path within p or DPATH.

link pathfind

See also: dpath.

suffix(s,sep)

suffix(s)

returns the list [pre,post] where pre is
the substring of s up to the last occurrence of
sep and post is the substring of s to the right
of the sep. The separator defaults to ".", ap-
propriate for both UNIX and MSDOS. If the
separator sep does not occur, suffix returns
[s,&null].

link filename

Table 31 File names and paths: IPL procedures.

I/O

Copyright © 1996. Thomas W. Christopher 101

tail(s,sep)

tail(s)

returns the list [pre,post] where pre is
the substring of s up to the last occurrence of
sep and post is the substring of s to the right
of the separator sep. The separator defaults to
"/" which is appropriate for UNIX paths.
Since Icon allows MSDOS paths to be speci-
fied with "/" rather than "\", it can be used for
DOS if you translate the paths. There are a
number of special cases, tail returns

• ["",s] if sep does not occur in s.

• [sep,s[2:0]] if sep==s[1].

• [s[1:j],s[j+1:0]] if sep occurs at
position j, 1<j<*s-1.

• [s[1:-1],&null] if sep occurs as the
last character in s.

link filename

tempname() generates names for a temporary file, i.e. a file
that does not appear to already exist. Under
UNIX, the file name has the form
 /tmp/icontmp.ddd
 where ddd is a string of exactly three digits.
Under MS-DOS, the filename is either of the
forms:
 temp\icon0ddd.tmp
or
 icon0ddd.tmp
The first form uses the directory bound to the
environment variable TEMP. If TEMP is not
defined, then the second form is used, placing
the file in the current directory.

Because Icon cannot directly test whether a file
exists, tempname returns the names of files it
could not open for reading, which might mean
the file exists but is locked. In that case, you
will not be able to open it for writing either.
Therefore tempname is a generator so that if
you can not open the first file generated, you
should be able to open a subsequent one.

link tempname

Table 31 File names and paths: IPL procedures.

Icon Programming Handbook

102 Copyright © 1996. Thomas W. Christopher

8.3 Directories

There are several built-in Icon functions that manipulate the directory structure,
changing the current directory or removing or renaming files. Several more are
available in the Icon Program Library.

UNIX and DOS and probably most systems have environment variables. The
system maintains a table of names bound to string values. The variables are used
to keep information about the user’s environment, such as terminal type and
search paths for programs. Icon gives access to environment variables via the
getenv function.

8.4 Character-based, interactive I/O

On some systems (not all) the Icon program has direct access to the terminal.
You can use these functions to write interactive systems. They do not work that

Table 32 Directory and environment procedures

chdir(s) changes the current directory to that indicated by
string s. Fails if it cannot change to that directory, per-
haps because it does not exist.

exists(name) succeeds if file named name can be opened, other-
wise fails.

link exists

gdl(dir) returns a list of all the file names in the directory in-
dicated by the string dir. Fails if there are no files in
the directory. Works with UNIX and MSDOS. In-
cludes the directory in the file names.

link gdl2

gdlrec(dir) (recursive gdl) returns a list of all the file names in the
directory indicated by the string dir and all its sub
directories. Fails if there are no files in the directory.
Works with UNIX and MSDOS. Includes the directo-
ry in the file names.

link gdl2

getenv(s) Systems typically provide environment variables: a
table mapping string names into string values.
getenv(s) returns the string associated with envi-
ronment variable s, or fails if there is none such.

remove(s) removes the file named s from the disk directory, or
fails if s cannot be removed.

rename(s1,s2) renames the file whose name is s1 to have name s2.
Fails if it cannot rename s1.

I/O

Copyright © 1996. Thomas W. Christopher 103

well on UNIX systems, however, and may leave the console in a strange mode
if Icon terminates abnormally.

Warning: These are not available in all versions of Icon. Moreover, win-
dows (Chapter 17 on page 151) make these functions obsolete.

If you are trying to use ANSI terminals, consult the IPL modules: ansi.icn,
iolib.icn, iscreen.icn, and itlib.icn.

Table 33 Interactive character I/O functions

getch() reads a character from the keyboard, but does not echo it.
Waits until a character is available.

getche() reads a character from the keyboard and echoes it. Waits until
a character is available.

kbhit() succeeds if a character has been typed at the keyboard that has
not been read in yet. Use this to avoid waiting.

Icon Programming Handbook

104 Copyright © 1996. Thomas W. Christopher

Lists

Copyright © 1996. Thomas W. Christopher 105

Chapter 9 Lists

9.1 Creation: list(), [...]

You can create lists using either the function list or the bracket notation as
shown in the following table.

Be warned that when you create a list using the form

list(n,val)

that val is evaluated once before the list is created. If val yields a mutable ob-
ject, all list elements share it. For example,

L:=list(2,list(2))
L[1][1]:=1

will result in L[2][1] also equaling 1. If you actually want a two-dimensional ar-
ray, use:

L:=list(2)
every !L:=list(2)

9.2 Positions subscripting and subranges

You can use lists as one-dimensional arrays.

The positions in a list are the same as in strings. The positions are at the left end,
the right end, and between elements. If there are n elements in the list, the left

Table 34 List creation

[] create an empty list

[e1,e2,...,en] create a list of n elements initialized to the values of
the expressions e1,e2,...,en.

list() create an empty list

list(n) create a list of n elements all initialized to &null

list(n,val) create a list of n elements all initialized to the value
of val

Icon Programming Handbook

106 Copyright © 1996. Thomas W. Christopher

end is numbered 1 and -n, the right end is numbered n+1 and 0. The internal po-
sitions are numbered up from the left or down from the right. For example, [“F”,
22, 3.0, “g”] would be numbered as shown in section Figure 27 on page 106.

A single subscript

L[i]

selects the element of the list to the immediate right of its position. The selected
element is a variable, i.e., it can be assigned to.

A subrange

L[i:j]
L[i+:j]
L[i-:j]

specification selects a sequence of elements. The selected elements are not a
variable; a subrange cannot be assigned to. The selected subrange is copied as
a new list.

If you are indexing into a series of lists (and/or tables or strings), you can use
either

L[i][j][k]

or

L[i,j,k]

9.3 Operators

The three unary operators that apply to all structured types apply, of course, to
lists—the size operator, *, the element generator, !, and the random selection, ?.
List concatenation uses three vertical bars, |||, rather than string concatenation's
two. The identity test operator, === (and its complement,~===), will succeed
(or fail) if the two operands are the same object so that any changes to one will
be seen through the other.

Figure 27 Character positions

[“F” , 22 , 3.0 , “g”]

1 2 3 4 5

-4 -3 -2 -1 0

Table 35 List operators

! L generates each element of the list as a variable

Lists

Copyright © 1996. Thomas W. Christopher 107

Example. Here’s a clever way to randomize the order of elements in a list x:

every !x :=: ?x

although it does not randomize well. Ward Cunningham and Ralph E. Griswold,
in procedure shuffle in the Icon Program Library, use

every i := *x to 2 by -1 do
 x[?i] :=: x[i]

Example. Here’s how you can reverse a list, L, in place:

every i:=1 to *L/2 do L[i]:=:L[-i]

Example. Here’s how you can rotate a list, L, by k places to the left:

L := L[k+1:0]|||L[1:k+1]

9.4 Stacks and queues

Lists may be used as doubly ended queues: you can insert or remove items from
either end. You can use them as stacks or queues. The operations are pictured
in Figure 28 on page 108 and listed in Table 36.

* L returns the length of the list

? L returns a randomly selected element of the list as a variable

L ||| M returns a new list equal to the concatenation of the two lists

L === M succeeds if the two operands are the same list

L ~=== M succeeds if the two operands are different lists

Table 35 List operators

Table 36 Lists as doubly ended queues

get(L) removes and returns the first element
of list L

pop(L) removes and returns the first element
of list L

pull(L) removes and returns the last element of
list L

Icon Programming Handbook

108 Copyright © 1996. Thomas W. Christopher

Example. Here’s how you can create a list, M, that is the reverse of another list,
L:

M:=[]
every push(M,!L)

Example. Here is the primes sieve program using a list rather than a string or a
long integer to keep track of the sets of candidate primes and known composite
numbers. Compare to Figure 26 on page 87 and Figure 24 on page 75.

procedure main()
local p,i,j,n
n:=1000
p:=list(n,1)
every i:=2 to sqrt(n) do

push(L,x) inserts x as the new first element of list
L, moving the other elements up one
position, e.g., push([1,2,3],4)
creates the same list as [4,1,2,3].

push(L,x1, x2, ..., xn) is equivalent to {push(L,x1);
push(L,x2); ... ;
push(L,xn)}. The end result is xn
on top of the stack.

put(L,x) inserts x as the new last element of list
L, leaving the other elements in their
previous positions, e.g.,
put([1,2,3],4) creates the same
list as [1,2,3,4].

put(L, x1, x2, ..., xn) is equivalent to {put(L,x1);
put(L,x2); ... ;
put(L,xn)}.

Table 36 Lists as doubly ended queues

L

push(L,x)

pop(L)
get(L)

pull(L)

put(L,x)

Figure 28 Stack and queue operations on a list.

Lists

Copyright © 1996. Thomas W. Christopher 109

if p[i]=1 then
every j:= i+i to n by i do p[j]:=0

every i:=2 to n do if p[i]=1 then write(i)
end

Example. Here is a program to write out Fibonacci numbers using a queue to
keep track of successive numbers. Compare to Figure 11 on page 50 and Figure
12 on page 51.

procedure main()
local f,i,n
n:=100000
f:=[1,1]
repeat {

i:=get(f)
if i>n then break
write(i)
put(f,i+f[1])

}
end

9.5 Other list functions

Table 37 shows some further functions that apply to lists:

Table 37 Other built-in list functions

copy(L) creates a new list with the same contents as list L.

image(L) "list_num(leng)". A count is incremented each time a
list is created. num is the value of the count when this list
was created. leng is the list’s current length.

set(L) creates a set whose initial contents are the elements of the
list L. See Chapter 11 on page 117.

sort(L) creates a new list whose contents are the elements of list L
in sorted order. Elements of the same type are grouped to-
gether. Lists, records, and other mutable objects are sorted
in their group by their order of creation.

sortf(L,i) creates a new list whose contents are the elements of list L
in sorted order. Records and lists contained in L with a size
of at least i are sorted by their ith field.

type(L) "list" if L is a list.

Icon Programming Handbook

110 Copyright © 1996. Thomas W. Christopher

Tables

Copyright © 1996. Thomas W. Christopher 111

Chapter 10 Tables

10.1 Creation, lookup and assignment

A table lets you associate values with keys. Both the keys and values can be of
any type. Values may be looked up by the key they are associated with. A given
key can have at most one value in the table, but the same value may be associ-
ated with any number of keys.

You create a table by calling the table function:

t:=table()

or

t:=table(x)

Both create empty tables. They differ in what value you find when you look up
a key that is not defined.

You assign a value, v, to a key, k, in the same fashion you would assign to an
element of a list:

t[k]:=v

You look up the value associated with key k again using the same syntax as sub-
scripting:

t[k]

Having assigned t[k]:=v, when we look up t[k] we get v. Actually, we get
a variable containing the value v. We can assign another value to it.

Suppose y is not a key in table t. What happens when we look up y? That de-
pends on how we created the table. If we used t:=table(), t[y] gives us
a variable containing &null. If we used t:=table(x), t[y] gives us a
variable containing the value x.

10.2 Initial value &null, \ and / idioms

When we create a table with a null initial value:

t:=table()

we can check for a key being defined using the \ or / unary operator. Form

Icon Programming Handbook

112 Copyright © 1996. Thomas W. Christopher

\t[x] will succeed if key x is defined and fail if it is undefined. Form /t[x]
is just the other way around.

Suppose you want to map keys into lists. You do not want to say

t:=table([])

because all new keys would be assigned the same list. What you wish to do is
create a new list whenever a new key is used:

/t[x]:=[]

For example, suppose you wish to make a table, t, that will map each character
that occurs in a string, s, into a list of the positions at which it occurs. You might
use the following code:

t:=table()
every i:=1 to *s & x:=s[i] do {

/t[x]:=[]
put(t[x],i)

}

Here is a technique (suggested by Todd Proebsting) to assign objects unique
IDs:

/t[x] := "tmp" || *t

10.3 Other initial values

The most common use for creating a table with a non-null default value is to
count the number of occurrences of items. Just make the default value zero, and
whenever you find an item, increment its count. For example, to count the num-
ber of occurrences of characters in a string, s, you can use:

t:=table(0)
every t[!s]+:=1

10.4 Sort

You create a sorted list of the contents of a table using procedure sort. The call is

sort(t,k)

where k is an integer from 1 to 4.

Your options are:

• the items can be sorted by the key or the value. If k is odd, Icon sorts by key.
If k is even, it sorts by value.

• the key/value pairs can come out in two elements sublists [...,[key,value],
[key,value],...], or they can alternate in the top level list [...,key, value, key,
value,...]. If k is 1 or 2, Icon gives you the two-item sublist form. If k is 3 or
4, it alternate the keys and values.

Tables

Copyright © 1996. Thomas W. Christopher 113

You do not get to choose ascending or descending order. They come out in as-
cending order. Just go through the list backwards if you want descending order.

Here are two ways to count the occurrences of characters in a string and write
out character counts:

Using the key/value pairs:

t:=table(0)
every t[!s]+:=1
every p:=!sort(t,1) do
 write(image(p[1]),"\t",p[2])

(We use image to print out a representation of non-printing characters.)

Using the alternating keys and values:

t:=table(0)
every t[!s]+:=1
L:= sort(t,3)
while write(image(get(L)),"\t",get(L))

10.5 Generating keys and values

The unary ! operator will generate all the values in the table as variables. More
useful is the function key.

key(t)

generates all the keys in the table.

If you would like to generate all the key/value pairs in a table, t, as two-elements
lists, but you don’t want to sort the table, you could use a subexpression like:

every p:=[k:=key(t),t[k]] ...

10.6 Functions

Here are some functions that operate on tables:

Table 38 Functions that apply to tables

copy(T) returns a copy of table T

delete(T,x) removes the key x and its value from table T.

image(T) returns a string "table_num(size)" Icon counts the
number of tables created and remembers the number of
each table. num is the number of the table. size is the
number of key/value pairs in the table.

insert(T,x,y) same as T[x]:=y

Icon Programming Handbook

114 Copyright © 1996. Thomas W. Christopher

10.7 Table operators

The unary *, !, and ? operators apply to tables as they do to other structures:

10.8 Example: word count

Here is a program to count the number of occurrences of words in the input file.
It is composed of a procedure, word, and a main procedure.

key(T) generates all the keys in the table

member(T,x) succeeds if key x is in table T. Returns x if it succeeds.

sort(T) same as sort(T,1)

sort(T,i) returns a list containing the keys and values from table
T. If ki is the ith key and vi is its corresponding value,
the resulting list is:

[[k1,v1],[k2,v2],...[kn,vn]] sorted by keys if i=1

[[k1,v1],[k2,v2],...[kn,vn]] sorted by values if i=2

[k1,v1,k2,v2,...kn,vn] sorted by keys if i=3

[k1,v1,k2,v2,...kn,vn] sorted by values if i=4

table() returns a new table. Attempting to look up a key not in
the table returns &null. For example, t[[]] will
yield &null because the new list [] can’t be in the
table.

table(x) returns a new table. Attempting to look up a key not in
the table returns the value of x. For example, t[[]]
will yield the value of x because the new list [] cannot
be in the table. The expression x is evaluated when the
table is created, so if you execute t:=table([]),
all new keys you look up will point to the same list.

type(T) returns "table"

Table 38 Functions that apply to tables

Table 39 Table operators

* t returns the size of the table

? t returns a random value in the table as a variable.

! t generates the values in the table, as variables. The function
key(t) is usually more useful.

Tables

Copyright © 1996. Thomas W. Christopher 115

The procedure word will generate lists of length two—the identifiers in the in-
put up paired with the numbers of the lines they occur in. (We will use the same
procedure in a cross-reference program later, which needs the line numbers.) It
uses the procedure idents to generate identifiers in a string in Figure 23 on
page 75.

Figure 29 Word: Generating the words in a file

procedure word()
local line,s,lno,i,j
lno:=0
while line:=read() do {

lno+:=1
suspend [idents(line),lno]

}
fail
end

The main procedure uses a table of words with a default value of zero to simpli-
fy incrementing counts. The words are sorted before being written out.

Figure 30 Count occurrences of words in the input

procedure main()
local w,h
h := table(0)
every w:=word() do {

h[w[1]] +:= 1
}
h := sort(h,3)
while write(get(h),"\t",get(h))
end

Icon Programming Handbook

116 Copyright © 1996. Thomas W. Christopher

Sets

Copyright © 1996. Thomas W. Christopher 117

Chapter 11 Sets

11.1 Creation

A set is an unordered collection of objects without duplication.

You create a set by calling the set function:

set()

or

set(L)

If you do not pass a parameter, the set function creates an empty set. If you pass
it a list, it will create a set containing all the elements of the list (omitting dupli-
cates).

11.2 Operators

The three unary operators that apply to all structured types apply, of course, to
sets—the size operator, *, the element generator, !, and the random selection, ?.
The identity test operator, === (and its complement,~===), will succeed (or
fail) if the two operands are the same object so that any changes to one will be
seen through the other.

The same set union (++), intersection (**), and difference (--) operators that ap-
ply to csets also apply to sets, but there is no complement operator.

Table 40 Set operators

operator precedence means

* s 12 returns the size of the set (number of elements)

! s 12 generates all the elements of the set

? s 12 chooses a random element of the set (return it, but do not
remove it from the set)

s1 ** s2 9 intersection: creates a new set containing those elements
that are in both s1 and s2

s1 ++ s2 8 union: creates a new set containing those elements that
are in either s1 or s2 or both

Icon Programming Handbook

118 Copyright © 1996. Thomas W. Christopher

11.3 Functions

Elements may be added to sets with function insert, removed with delete.
Function member tests to see if an element is a member of a set. The functions
copy, image, and type, that apply to all types, of course, apply to sets as
well.

s1 -- s2 8 difference: creates a new set containing those elements
that are in s1 but not in s2

s1 === s2 6 if s1 and s2 reference the same set, === succeeds return-
ing that set, but fails otherwise

s1 ~=== s2 6 if s1 and s2 reference different objects, ~=== succeeds
returning that s2, but fails otherwise

Table 40 Set operators

operator precedence means

Table 41 Functions that apply to sets

copy(S) creates a copy of set S

delete(S,x) deletes element x from set S. Returns set S.

image(S) returns a string "set_num(size)" Icon counts the
number of sets created and remembers the number of
each set. num is the number of the set. size is the number
of members in the set.

insert(S,x) inserts element x into set S (if it is not already present).
Returns S.

member(S,x) succeeds if x is a member of set S, fails otherwise. Re-
turns x if it succeeds.

set() creates an empty set.

set(L) creates a set composed of the elements of list L.

sort(S) creates a list composed of the members of set S in sorted
order. Elements of the same type are grouped together.
Lists, records, and other mutable objects are sorted in
their group by their order of creation.

sortf(S,i) creates a new list whose contents are the elements of set
S in sorted order. Records and lists contained in S with a
size of at least i are sorted by their ith field.

type(S) returns "set"

Sets

Copyright © 1996. Thomas W. Christopher 119

11.4 Idiom: to-do sets

One use of sets is to keep track of things that have to be processed or that already
have been processed. Even though you may discover several times that some-
thing should be processed, you still want to process it only once. If you try keep-
ing a to-do list, you might put the same item on several times. With sets, you do
not have duplicates.

11.5 Examples using sets

11.5.1 Cross reference

Here is a program to report the identifiers that occur in a file (the standard input)
and lines in which they occur. It keeps sets of line numbers so that a line will be
reported at most once for an identifier. On output, the identifiers and line num-
bers are sorted. This code uses the procedure word defined in Figure 29 on page
115.

Figure 31 Cross reference listing

procedure main()
local w,xr,lnos
xr := table()
every w:=word() do {

/xr[w[1]] := set()
insert(xr[w[1]],w[2])

}
xr := sort(xr,3)
while writes(get(xr),"\t") & lnos:=get(xr) do {

every writes(" ",!sort(lnos))
write()

}
end

11.5.2 Cross reference without reserved words

Suppose we want the cross reference listing to omit Icon reserved words. We
can construct a set of those words and check to see if the word we have found
is in the set before putting it in the table.

Figure 32 Cross references without reserved words

procedure main()
local w,xr,lnos, reserved
xr := table()
reserved:=set(["global","local","static","record",

"procedure","end","initial","re-
turn","fail","suspend",

"if","then","else","case","of",
"every","do","while","until",
"repeat","break","next",
"to","by","not"])

Icon Programming Handbook

120 Copyright © 1996. Thomas W. Christopher

every w:=word() & not member(reserved,w[1]) do {
/xr[w[1]] := set()
insert(xr[w[1]],w[2])

}
xr := sort(xr,3)
while writes(get(xr),"\t") & lnos:=get(xr) do {

every writes(" ",!sort(lnos))
write()

}
end

11.5.3 Eight queens problem

The eight queens problem is to place eight queens on a chess board (8×8) so that
no two attack each other. That means no two queens may be on the same col-
umn, row, or diagonal.

The work is done in procedure placeQueen(c) that places a queen in each posi-
tion of column c where it is not on an occupied row or diagonal and then calls
placeQueen(c+1) to place the next queen. When called with c>8, placeQueen
will call writeBoard to write out the configuration.

Sets are used to indicate which rows and diagonals are occupied. The trick for
representing diagonals is as follows:

Number the rows from 1 to 8 from top to bottom and the columns from 1 to 8
left to right.

Notice that the square at row r and column c is on two diagonals, one going up
to the right and the other going down.

For every square on the diagonal going down to the right, the square’s row num-
ber, i, and column number, j, have the same difference: i-j = r-c.

For all squares on the diagonal going up to the right, the sum of the row number,
i, and column number, j, are the same: i+j = r+c.

So to check whether square (r,c) is attacked by some other queen, we check to
see if r is a member of set row, r-c is a member of set diffDiag, and r+c is a mem-
ber of sumDiag.

Figure 33 The eight queens problem

global numQueens, row, sumDiag, diffDiag, placement

procedure main()
numQueens:=8
row:=set()
sumDiag:=set()
diffDiag:=set()
placement:=[]
placeQueen(1)

Sets

Copyright © 1996. Thomas W. Christopher 121

end

procedure placeQueen(c)
if c>numQueens then

return writeBoard()

every r:=1 to numQueens &
not member(row,r) &
not member(sumDiag,r+c) &
not member(diffDiag,r-c) do {

insert(row,r)
insert(sumDiag,r+c)
insert(diffDiag,r-c)
put(placement,r)
placeQueen(c+1)
delete(row,r)
delete(sumDiag,r+c)
delete(diffDiag,r-c)
pull(placement,r)

}
return
end

procedure writeBoard()
local board,c,r
board:=list(numQueens,repl("_",numQueens))
everyr:=1 to numQueens &

c:=1 to numQueens &
(r+c)%2=1 do

board[r][c]:="x"

every c:= 1 to numQueens do {
r:=placement[c]
board[r][c]:="Q"

}
every write(!board)
write()
return
end

11.5.4 Primes sieve using sets

Here is the primes sieve program again, this time using sets rather than bits,
strings, or lists. For the other versions, see Figure 26 on page 87 and Figure 24
on page 75.

procedure main()
local p,i,j,n
n:=1000
p:=set()

Icon Programming Handbook

122 Copyright © 1996. Thomas W. Christopher

every i:=2 to n do insert(p,i)
every i:=2 to sqrt(n) &

member(p,i) &
j:= i+i to n by i do delete(p,j)

every i:=2 to n & member(p,i) do write(i)
end

Records

Copyright © 1996. Thomas W. Christopher 123

Chapter 12 Records

12.1 Record declarations

Record types in Icon are like struct’s in C or records in Pascal. They are declared
at the same level as procedures and globals:

record recordName(field1, field2,..., fieldn)

The recordName is the name of the record type. It also becomes the name of
a record constructor procedure. The fields are identifiers that name the members
or fields of the record. The list of fields may be empty.

12.2 Creation

You create an instance of a record by calling its record constructor procedure
passing it initial values for the fields, e.g.,

r := recordName(e1,e2,...,em)

If you pass more values than there are fields, the rightmost arguments are ig-
nored. If you pass fewer, the remaining fields are initialized to &null.

Records are mutable values. They are accessed via pointers.

12.3 Field access r.f

The normal way to access a field uses the dot notation:

r.f

will select field f of record r. It is a variable; you can assign to it. More than one
record type can have the same field name; Icon selects the correct field at run
time. If the record does not have a field with that name, Icon reports an error at
run time.

12.4 Generating fields: ! (unary)

The unary exclamation point operator will generate the fields in a record from
left to right. This is used for displaying the contents of a record in debugging
routines and for persistence, saving data structures in string format on disk.

12.5 Subscripting records: r["f"] r[i]

Two other ways to access a record’s fields are to subscript it as if it were a table

Icon Programming Handbook

124 Copyright © 1996. Thomas W. Christopher

or a list.

If you subscript a record with a string containing a field name, you will select
the field of the record with that name. If the record does not have a field by that
name, the attempt to subscript fails, rather than causing a run-time error.

If you subscript a record with an integer index, you get the field at that position.

12.6 Applying a procedure to the fields: ! (binary)

You can use the binary operator ! to apply a procedure to a record. The fields
of the record are passed as parameters to the procedure.

You can also use the binary operator ! to apply the record constructor to a list.

If you wanted to convert the fields in a record, r, to a list, you could use a pro-
cedure:

procedure returnArgs(L[])
return L
end

and call it with

returnArgs!r

12.7 Record operators

Here is a summary of the operators that apply to records:

Table 42 Operators that apply to records

* r size (number of fields) or record r

! r generate the fields of r from left to right as variables

? r choose a field of r, randomly. (No, we don’t have any idea
what we would use it for either.)

p ! r pass the fields of r to procedure p

rc ! L create a record by passing the fields of structure (probably list)
L to record constructor rc.

r . f select field f of record r (a variable)

r [i] select the ith field of record r (a variable), or fail if there is
no such field

r [s] select field of record r with the name given by string s (a vari-
able), or fail if there is no such field

Records

Copyright © 1996. Thomas W. Christopher 125

12.8 Record functions

There are three built-in functions that particularly apply to records:

Table 43 Functions that apply to records

copy(r) creates a new record with the type and contents of record r.

image(r) returns a string "t_i(l)" where t is the record type, i is the
number of this record, and l is the length.

type(r) returns the type of record r as a string, e.g., if r was created
r:=R(...) then type(r)=="R".

Icon Programming Handbook

126 Copyright © 1996. Thomas W. Christopher

Data Types and Conversions

Copyright © 1996. Thomas W. Christopher 127

Chapter 13 Data Types and Conversions

13.1 Variables and Values

In Icon, variables correspond to storage cells into which values can be assigned
and from which values can be fetched. Expressions can yield variables, but vari-
ables are not quite "first class" objects. Here are some of the rules for variables:

• You can declare variables with global, local and static declarations.

• Procedure declarations create global variables with the name of the proce-
dure which are initialized to the code for the procedure. You can assign an-
other value to the variable, losing access to the procedure.

• Some keywords are variables. Some are not.

• Subscripted lists, tables, and records are variables; however, a list subscript-
ed with a range, e.g., L[i:j], is a value, not a variable.

• A subscripted variable that contains a string is a variable; but it can only be
assigned a string.

• A subscripted string value is a value.

• A procedure can return or suspend yielding a variable, but a local or static
variable will have its value returned instead (locals will not be there any
more once the procedure has returned).

• The unary operators ! and ? applied to lists, tables, or records yield variables.
They also return variables when applied to variables containing strings.

• The unary / and \ operators preserve variables (i.e., if they're given a vari-
able, they return it), although they examine the values the variables contain.

• The assignment operators require variables on the left hand side. They re-
turn their left hand sides as variables. The exchange operators require vari-
ables on both sides; they also return the left hand side variable.

• The &, |, if and case control constructs preserve variables.

• The unary dereference operator, ., returns the value of x. It is used to force
the value to be fetched immediately.

• You cannot assign a variable to a variable and "go indirect through it" to ac-
cess the cell it points to.

Icon Programming Handbook

128 Copyright © 1996. Thomas W. Christopher

• A variable is left as a variable until its value is needed.

• Variables in a parameter list are left as variables until the procedure is
called, meaning that assignments to the variables later in the parameter list
will change the value passed. The same is true of variables within the brack-
eted list constructor, [e1, e2, ..., en].

13.2 Operations On Arbitrary Types

Most Icon operators restrict the types of their operands, but a few work with any
type.

The assignment operators will assign any type of value to a variable, although
only a string can be assigned to a subscripted string variable. There are two va-
rieties of assignment operators, irreversible and reversible. The irreversible as-
signment operators, := and :=:, simply perform the assignment and are done
with it. The reversible assignments, <- and <->, will be resumed during back-
tracking and restore the value the variable(s) had before the assignment.

The object equal operators (=== and ~===) test two objects to see if they are
identical. Structured objects, lists, tables, records and such, may have identical
contents, but they are only equal if they are the same object.

Table 44 Operations on variables

. x returns the value of x. It is only significant when x is a
variable. Normally a variable is left as a variable until its
value is needed. For example, variables in a parameter list
are left as variables until the procedure is called, meaning
that assignments to the variables later in the parameter list
will change the value passed. The . (dereference) opera-
tor will force the value to be fetched immediately.

variable(s) returns the variable or variable keyword whose name is
contained in string s. It will only return a variable known
at the place of call—you can only access a local variable
within a procedure.

Table 45 Operations on arbitrary types

operator precedence means

x === y 6 succeed if the values of x and y are the
same object, or if they are immutable ob-
jects like numbers, strings, or csets, suc-
ceed if they have the same contents.
Otherwise, fail.

Data Types and Conversions

Copyright © 1996. Thomas W. Christopher 129

13.3 Built-in conversions

The built-in data conversions in Icon involve integer, real, string, and cset val-
ues. In a context where one of those types is required, Icon will attempt to con-
vert a value of any of the other types to that type. However, some of the

x ~=== y 6 succeed if the values of x and y are differ-
ent mutable objects, or if they are immuta-
ble objects like numbers, strings, or csets,
will succeed if they have different con-
tents. Otherwise, fail.

x := y 3 assign the value y and return variable x.

x :=: y 3 exchange the values in the variables x and
y and return variable x.

x <- y 3 assign the value y and return variable x. If
resumed during backtracking, restore the
value x had before the assignment.

x <-> y 3 exchange the values in the variables x and
y and return variable x. If resumed during
backtracking, restore the values x and y
had before the assignment.

x | y 5 yields the sequence generated by the left
operand followed by sequence generated
by the right. (It is not a true operator.)

x & y 1 for every element of the sequence generat-
ed by the left operand, it yields the se-
quence generated by the right.

copy(x) copy(x) creates a new instance of any
mutable object x (list, table, set, record)
that has the same internal structure as x,
but is not equal (~===) to x. Immutable
objects like numbers, strings, csets are left
as is.

image(x) image(x) creates a legible string that in
some sense describes object x. If x is a
string or a cset, the image has quotes
around it and has its illegible characters
represented by escape sequences.

type(x) type(x) returns a string that represents
the type of object x.

Table 45 Operations on arbitrary types

operator precedence means

Icon Programming Handbook

130 Copyright © 1996. Thomas W. Christopher

conversions go through an intermediate type. The conversions are shown in Fig-
ure 34.

Integers and reals are converted directly to each other and directly to string. To
convert an integer or real to a cset, it is first converted to a string and then the
characters in its string representation are converted to a cset. That is the meaning
of the arrows going from integer and real to cset going through the box labeled
string.

Conversions from string to integer or real first go into either numeric represen-
tation, meaning the converted string could be integer or real—it all depends on
which type of value the string represents. If either type would do, the number is
left as which ever type the string represented. If a specific type is required, then
an integer is converted to real, or real to integer, as required.

A string is converted into a cset by making a set of all the characters in the
string. A cset is converted to a string by simply listing the characters in it in or-
der. A cset can be converted to an integer or real if its sorted characters form a
valid numeric representation.

13.4 Translating structures to strings

The Icon Program Library contains two procedures, encode and decode, to
translate an arbitrary data structure into a string and to translate the string back
into the data structure. In the graph of the data structure multiple paths to the
same object are permitted, cycles are permitted. The structure will be recreated
when the string is converted back.These procedures are contained in file code-

string

numeric

integer

real

cset

Figure 34 Built-in data conversions.

Data Types and Conversions

Copyright © 1996. Thomas W. Christopher 131

obj.icn and are described in Table 46.

Procedure encode produces strings without control characters or newlines in
them, so the strings can safely be written out to files and read back in. However,
if the data structures are large, you would do better to write them and read them
back with procedures xencode and xdecode from file xcode.icn.

Procedures xencode and xdecode can also be used, as shown in the table, to
linearize data structures into a list of strings.

Table 46 Encoding and decoding data structures.

decode(x) translates a string produced by encode back into a
data structure isomorphic to the one encoded.

link codeobj

encode(x) translates the data structure accessible from x into
a string and returns that string. Any contained
files, functions, procedures, co-expressions, and
windows cannot be properly contained in a string,
so don’t try to include them.

link codeobj

xdecode(f)
xdecode(f,p)

reads, reconstructs, and returns the Icon data struc-
ture from file f that was previously saved there by
xencode. Files, co-expressions, and windows are
decoded as empty lists (except for files &input,
&output, and &errout). Fails if the file is not
in xcode format or if it contains an undeclared
record.

If p is provided, xdecode reads the lines calling
p(f) rather than read(f). See xencode for an
idea of what to use this for.

link xcode

xencode(x,f)
xencode(x,f,p)

encodes and writes the data structure x into file f.
The data structure can be read back in by
xdecode. If parameter p is provided, it is called
in place of write, i.e. p(f,...) instead of
write(f,...), in which case f need not be a
file, e.g.
 xencode(x,L:=[],put)
will encode the data structure into a list, L.

link xcode

Icon Programming Handbook

132 Copyright © 1996. Thomas W. Christopher

Debugging

Copyright © 1996. Thomas W. Christopher 133

Chapter 14 Debugging

14.1 Basic debugging

You will do your debugging of Icon programs at run-time.

Because Icon is a typeless language, the translator cannot check that you are
matching operand types properly for operators. Mismatched types will cause
your most common run-time error. Fortunately, when Icon detects an error, it
will stop execution and inform you of the problem. It will give the file and line
number where the error occurred, a trace-back of all the active procedure calls,
and an explanation of what was wrong.

For problems with your algorithms, however, there is less help. There is no
"Icon Programming Environment" to allow you to single-step your program or
put in breakpoints and watch expressions. You debug your programs either by
turning on tracing or by inserting output commands in the code.

Tracing is controlled by the variable keyword &trace. When &trace is non-
zero, procedure calls, returns, suspends and resumes, result in a line being writ-
ten to the standard error output. The value of &trace is decremented each time
a line is written, so if you set it to a positive value, it will only trace until that
value goes to zero. You can assign a value to &trace to start tracing. You can
stop the tracing by assigning &trace := 0. If you assign &trace:=-1,
tracing will continue indefinitely.

You can initialize the value of &trace before running the program by assign-
ing a value to the environment variable TRACE, e.g.,

set TRACE=1000

or

setenv TRACE 1000

If you need to examine the state of the computation at some point within the pro-
gram, the easiest output command to add is a call to the display() function.
It will show the active procedures and the contents of variables.

If you want to tailor your own debugging messages, you probably want to use
functions image(x) and name(x) to get strings that represent values and
variables.

Icon Programming Handbook

134 Copyright © 1996. Thomas W. Christopher

Here are some functions and keywords you may find useful.

Table 47 Debugging functions and keywords

display(i,f) writes to file f the names of the i most recently called
active procedures, their local variables, and the glo-
bal variables. Used for debugging.

display(i) writes to &errout the names of the i most recently
called active procedures, their local variables, and the
global variables. Used for debugging.

display() writes to &errout the names of all the active proce-
dures, their local variables, and the global variables.
Used for debugging.

&dump a variable. If &dump is nonzero on program termina-
tion, Icon calls display() before terminating.

&error controls whether errors cause the program to termi-
nate. When zero, an error causes program termination
with an error message. If nonzero, an error causes a
failure and &error is decremented. The error mes-
sage that would have been reported is instead as-
signed to keywords &errornumber,
&errortext, and &errorvalue.

errorclear() clears the indication that an error has occurred. Ref-
erences to the keywords &errornumber,
&errortext, and &errorvalue fail until the
next error has occurred.

&errornumber the number of an error.

&errortext the text explaining the error.

&errorvalue the offending value (e.g., whose type didn’t match).
Access to &errorvalue will fail if there is no of-
fending value associated with the error.

&errout the standard error output file.

&file the file name of the file this code was compiled from.

&host the name of the computer system the program is run-
ning on.

image(x) returns a legible representation of object x. For de-
tails, see Section 6.6, String editing and conversion
functions, on page 65.

&level is the number of levels of active procedures calls.

&line is the number of the line this keyword occurs on.

Debugging

Copyright © 1996. Thomas W. Christopher 135

The current numbers and messages for Icon’s run-time errors are shown in Ta-
ble 48 on page 135.

name(x) just as image(x) gives a legible indication of a val-
ue, name(x) gives a legible indication of a variable.
If the variable, x, is a keyword or declared variable,
name gives its name as a character string. If it is a
component of a structure, name(x) gives the struc-
ture type (list, record,...) and the way the compo-
nent is usually accessed, e.g., "list[2]",
"rec.f".

&progname the file name of the executing program. It's a variable.
You can assign another string to it if you wish.

runerr(i,x) cause the program to terminate with a standard run
time error message for error number i and offending
object x.

&trace when not equal to zero, every procedure call, return,
suspension, or resumption writes a message to &er-
rout and decrements &trace.

type(x) returns the type of the value x as a string. For details,
see section 6.6 on page 65.

&version is a string representation of the version of Icon that is
executing.

Table 48 Run-time errors

number message

101 integer expected or out of range

102 numeric expected

103 string expected

104 cset expected

105 file expected

106 procedure or integer expected

107 record expected

108 list expected

109 string or file expected

110 string or list expected

Table 47 Debugging functions and keywords

Icon Programming Handbook

136 Copyright © 1996. Thomas W. Christopher

111 variable expected

112 invalid type to size operation

113 invalid type to random operation

114 invalid type to subscript operation

115 structure expected (e.g. list, set, or table)

116 invalid type to element generator

117 missing main procedure

118 co-expression expected

119 set expected

120 two csets or two sets expected

121 function not supported

122 set or table expected

123 invalid type

124 table expected

125 list, record, or set expected

126 list or record expected

127 improper event monitoring setup

140 window expected

141 program terminated by window manager

142 attempt to read/write on closed window

143 malformed event queue

144 window system error

145 bad window attribute

146 incorrect number of arguments to drawing function

201 division by zero

202 taking the remainder of division by zero

203 integer overflow

Table 48 Run-time errors

number message

Debugging

Copyright © 1996. Thomas W. Christopher 137

204 real overflow, underflow, or division by zero

205 invalid value

206 negative first argument to real exponentiation

207 invalid field name

208 second and third argument to map of unequal length

209 invalid second argument to open

210 non-ascending arguments to detab/entab

211 by value equal to zero

212 attempt to read file not open for reading

213 attempt to write file not open for writing

214 input/output error

215 attempt to refresh &main

216 external function not found

301 evaluation stack overflow

302 memory violation

303 inadequate space for evaluation stack

304 inadequate space in qualifier list

305 inadequate space for static allocation

306 inadequate space in string region

307 inadequate space in block region

308 system stack overflow in co-expression

316 interpreter stack too large

318 co-expression stack too large

401 co-expressions not implemented

402 program not compiled with debugging option

500 program malfunction

600 vidget usage error

Table 48 Run-time errors

number message

Icon Programming Handbook

138 Copyright © 1996. Thomas W. Christopher

14.2 Monitoring storage

Because Icon automatically reclaims storage (called "garbage collection"), the
amounts of storage used by programs can cause significant differences in per-
formance. Icon provides some functions and keywords to allow you to see what
the storage requirements of your program are.

There are three sections of storage:

1. the static section composed of blocks that are never moved,

2. the string region filled with characters,

3. the block region, composed of blocks of storage that are allocated for
most structured data types.

Active storage in both the string and block region is compressed to one end of
their area when they are garbage collected.

The garbage collector only runs when storage in some region is exhausted or
when you call the function collect. Since the program does not run concurrently
with the garbage collector, you may notice your program pausing every so of-
ten. Do not use Icon for real-time systems.

If you are holding onto a lot of storage in some region—that is, if it is all acces-
sible all the time—then the garbage collector may run frequently collecting only
a little space each time. If your program is about to run out of space, it may take
a very long time to actually do so.

If you suspect you are having problems with storage, you can use the function
and keywords shown in the following table to find out.

Table 49 Storage management

collect() forces a garbage collection.

collect(i) forces a garbage collection of region i, where i spec-
ifies the region

0—no specific region
1—static region
2—string region
3—block region

collect(i,j) forces a garbage collection of region i, where i spec-
ifies the region as shown for collect(i) above.
Fails if there are not at least j bytes available in the
region after collection.

Debugging

Copyright © 1996. Thomas W. Christopher 139

&collections generates four values:

• the number of garbage collections

• the number caused by attempts to allocate in the
static region

• the number caused by attempts to allocate in the
string region

• the number caused by attempts to allocate in the
block region.

The first value may be larger than the sum of the
other three due to calls to collect().

®ions generates the current sizes of the three regions: stat-
ic, string, and block. The size of the static region
may not mean anything: Icon might allocate more
space from the system when needed.

&storage generates the amount of space currently in use in the
three regions: static, string, and block. Again, the
space occupied in the static region may not mean
anything.

Table 49 Storage management

Icon Programming Handbook

140 Copyright © 1996. Thomas W. Christopher

Writing systems

Copyright © 1996. Thomas W. Christopher 141

Chapter 15 Writing systems

15.1 Translator commands

15.1.1 Translator and compiler

Most people use the Icon translator and interpreter system as shown at the left
in Figure 35. On some systems an Icon compiler is available. The compiler can

produce a faster-running Icon program, but the compiler itself is slow and re-
quires a great deal of memory to run. The compiler generates a C program
which then must be compiled by a C compiler.

The command line to translate an Icon program is

icont options and file names

Figure 35 Icon translator and compiler.

Icon program

preprocessor

translator

ucode

linker

icode

interpreter

Icon program

preprocessor

Icon compiler

C code

C compiler

executable code

Icon Programming Handbook

142 Copyright © 1996. Thomas W. Christopher

The command line to compile an Icon program is

iconc options and file names

The beta version of Icon translator with graphics facilities for Microsoft Win-
dows is called wicont.

15.1.2 Translating multiple files

It’s best to divide large programs into a collection of modules. Each module is
placed in a different file and the files are combined to produce the overall pro-
gram.

In Icon, you can compile multiple files together by the command

icont f1 f2 ... fn

where f1 f2 ... fn are the names of the files. The executable file produced
takes its name from f1.

After you have some of the modules well debugged, you do not need to compile
them over again each time. You can compile a file to be linked in later by the
command

icont -c f2

which will produce a pair of files, f2.u1 and f2.u2. You then include those
files in a compilation by referring to file f2.u:

icont f1 f2.u ... fn

You can have the precompiled files included automatically, without listing them
on the command line, by listing them in a module that uses them. Use the link
declaration inside your icon program:

link f2,f3,...,fn

where each fi is either an Icon identifier that is the same as a file name (without
the ".u") or a string that is a file name (probably because of some non-identifier
characters). For example:

link array,"hash-tbl"

The link declaration causes Icon to include the compiled (ucode, .u1 and
.u2) files named. It will search for them through several directories. First it
searches the current directory. If they are not found there, it reads the environ-
ment variable IPATH. IPATH should be set to a list of directory paths separated
by blanks which Icon will investigate in order to find the named files.

15.1.3 Command-line arguments

Commands to the translator are shown in Table 50. These vary somewhat by the
version of Icon, so you will need to consult the documentation on your version

Writing systems

Copyright © 1996. Thomas W. Christopher 143

if these don’t work.

Table 50 . Command line flags for icont.

-c translate the files into ucode files, not all the way to
an interpretable or executable file. (Or, in the case of
the compiler, to code in the C programming lan-
guage.)

-C cc in the Icon compiler, use the C compiler located at
cc.

-e file redirect error output to file rather than to the stan-
dard error output.

-f opts enable the features specified by the option characters
in the string opts.

• a—all features.
• d—enable debugging features.
• e—enable error conversion.
• l—enable large integer arithmetic.
• n—keep track of source code line numbers and

filenames.
• s—enable string invocation.

These features are disabled in the compiler in order
to achieve greater execution speed. String invoca-
tion is also now disabled in the translator to decrease
the size of the translated files. Instead of specifying
icont -fs ..., it is better to include
invocable all in your program.

-n opts in the Icon compiler, disable the specific optimiza-
tions given by characters in opts.

• a—all.
• c—control flow optimizations other than switch

statements.
• e—expand operations in-line
• s—switch statements.
• t—type inference.

-o filename name the translated Icon program filename, rath-
er than taking its name from the first file listed in the
icont command.

-p ccarg in the compiler, pass argument ccarg to the C com-
piler.

-r path use the run-time system located at path.

-s suppress informative messages from the translator

Icon Programming Handbook

144 Copyright © 1996. Thomas W. Christopher

15.2 Global name space

Unfortunately, Icon has a single global name space. There are no variables or
procedures private to files. This means you may have to deal with name colli-
sions: using the same name in more than one module.

Probably the safest way to deal with this is to choose a name for each module
and combine it with the local name using an underscore. For example, use
setHigh_Space or Space_setHigh for the setHigh procedure provid-
ed in the Space module.

15.3 The preprocessor

Icon provides an inferior version of the C processor to aid in program develop-
ment. The C preprocessor processes commands that begin with a #-sign and a
directive name, but since # introduces comments in Icon, Icon begins its prepro-
cessor directives with $. The directives are given in Table 51.

-t initialize &trace to -1, that is, run the program
with tracing turned on.

-u issue warnings for undeclared identifiers used in the
program.

-v i controls the verbosity of the translator’s output:

• -v 0 suppresses messages the same as -s
• -v 1 is the default
• -v 2 reports the sizes of sections of the icode file
• -v 3 lists globals that are being discarded.

Table 50 . Command line flags for icont.

Table 51 Preprocessor directives.

$define name text # cmmt defines name. When name is encountered subse-
quently in the program, it will be replaced with text.
The replacement text itself is scanned for replace-
ments, although Icon suppresses further replace-
ments of name within text to avoid infinite loops.
The text may be empty.

The # cmmt is a comment, which may, of course,
be omitted.

$error text causes a fatal compile-time error displaying text.
You would use it within $ifdef’s when you have
determined the required options are not available.

Writing systems

Copyright © 1996. Thomas W. Christopher 145

15.4 Environment Inquiries

There are a number of functions and keywords that provide information to the
Icon program. They allow an Icon program to find out about the files it was
compiled from, the features of the version of Icon running, the host machine,
the time, and the values of environment variables in the operating system.

$ifdef name
...lines-if-defined
$else
...lines-if-not-defined
$endif

if name is defined, include the lines-if-de-
fined, otherwise include the lines-if-not-
defined. The $else and lines-if-not-
defined are optional.

$ifndef name
...lines-if-not-defined
$else
...lines-if-defined
$endif

if name is defined, include the lines-if-de-
fined, otherwise include the lines-if-not-
defined. The $else and lines-if-de-
fined are optional. These directives may be nest-
ed. They must be balanced, i.e. occur as a group, in
order, in the same file—they cannot extend into or
out of an included file.

$include filename includes the contents of the specified file in place of
the $include directive. If filename is not an
Icon identifier, it must be quoted.

$line n
$line n filename

tells the translator to consider this line to be number
n. This differs from C, where the line command tells
the compiler to consider the following line to be
number n. If filename is supplied, the subsequent
lines are considered to be in the specified file. If
filename is not an Icon identifier, it must be quot-
ed.

$undef name undefine, i.e. remove the definition of, name.

Table 51 Preprocessor directives.

Table 52 Environment inquiries

&clock returns a string giving the current time of day
"hh:mm:ss", in 24 hour form.

&date returns the current date in the form "yyyy/
mm/dd".

&dateline returns the current date and time of day as a
string.

&features generates strings indicating the features of this
version of Icon.

Icon Programming Handbook

146 Copyright © 1996. Thomas W. Christopher

function() generates the names of Icon’s built-in func-
tions.

&file contains the name of the file the current line
was compiled from.

getenv(s) returns the string associated with the environ-
ment variable named s. The environment vari-
ables are string-valued variables maintained
by the operating system (typically, the shell
program).

&host contains a string identifying the computer sys-
tem Icon is running on.

&line contains the number of the current line in the
file it was compiled from.

&progname contains the file name of the executing pro-
gram.

system(s) executes the string s as a system (shell) com-
mand and returns the exit status (an integer) by
calling the C function system. It is not avail-
able on all systems, but it is available on
UNIX©.

&time returns the number of milliseconds since the
program started executing.

&version contains a string identifying the version of
Icon that is executing.

Table 52 Environment inquiries

Co-expressions

Copyright © 1996. Thomas W. Christopher 147

Chapter 16 Co-expressions

16.1 What are co-expressions?

You can understand Icon backtracking by imagining a single "point of control"
moving left to right through an expression and then backtracking right to left.
Co-expressions are a way to have more than one point of control. Icon moves
only one point of control at a time, that of the current co-expression, but it can
resume moving the others at any time.

Warning. Co-expressions are not present in all Icon implementations.

16.2 Creation: create e

You create a co-expression by the form:

c := create e

which yields a co-expression ready to evaluate expression e. The co-expression
saves a copy of the local variables of the procedure that executed the create.
Whenever expression e refers to any local variable of the surrounding proce-
dure, it is referring to its own copy. Assignments to local variables will not be
seen by the procedure that created the co-expression.

16.3 Activating a co-expression

Suppose we created a co-expression

c := create e

You hand control to a co-expression, c, by using the form:

@ c

The co-expression will be allowed to execute until it passes control to another
co-expression.

Typically, expression e in the co-expression c will execute until it generates a
value. The value is then passed back as the value of the @c operation. When en-
tered again, expression e will backtrack to generate another value. When e fi-
nally fails, the @c will fail.

When control is moving forward, the operation @c will activate, resume execut-
ing, the co-expression. It will not activate c during backtracking. For example

Icon Programming Handbook

148 Copyright © 1996. Thomas W. Christopher

c:=create 1 to 3
while i:=@c do writes(i)
d:=create 1 to 3
every i:=@d do writes(i)

writes out

1231

Three times the while loop reactivates the co-expression, c, and it generates
a new integer, and the fourth time it fails, leaving the loop. The every, how-
ever, activates the co-expression, d, generating the value 1. After writing out the
1, it backs into @d, which does not reactivate the co-expression, and control
falls out of the loop.

16.4 States of a co-expression

Only one co-expression will be executing at a time. Any others will be waiting
to execute in any of three states:

It may be waiting to begin execution, immediately following a create or a re-
fresh, ^.

It may have generated a value and be waiting to backtrack into its expression.

It may have explicitly given control to another co-expression with an @ opera-
tor and be waiting to have control passed back to it.

16.5 Getting the number of values generated

The size operator,

 *c

 will tell how many values a co-expression, c, has generated.

16.6 Refreshed copies

You can create a refreshed copy of a co-expression using the unary ^ operator.
A co-expression saves a copy of its initial state, that is, the local variables of the
procedure that executed the create and the address of the code it is to execute.

^ c

creates a new co-expression in the initial state c was in. It will start executing
from the beginning. Figure 36 shows the internal data structure for co-expres-
sions. The co-expression proper has a stack and a pointer to a shared block of
storage with a snapshot of the original contents of the surrounding procedure’s
local variables. When a refreshed copy of a co-expression is created, a new
stack is allocated and initialized from the snapshot.

Co-expressions

Copyright © 1996. Thomas W. Christopher 149

16.7 Symmetric activation: val @ c

A co-expression may explicitly pass control to another waiting co-expression
no matter what state it is in. The general form for passing control is the binary
@ operator.

e @ c

will pass the value of e to the co-expression c. If c is waiting at an @ operator,
the value passed to it will become the value of c’s @ operation. If c is waiting
either to begin execution or to backtrack, it is unable to receive the value, so the
value is ignored. The unary operation, @ c, means the same as &null @ c.

16.8 Co-expression keywords

There are three keywords that are bound to co-expressions. They are shown in
Table 53.

16.9 p { ... }

A procedure call,

p { e1, e2, ..., en}

is equivalent to

p([create e1, create e2, ..., create en])

Figure 36 Refreshed copies of co-expressions.

co-expression c’s

Original variables

co-expression d’s

c

d

After
c := create ...
d := ^c;

stack

stack

Table 53 Co-expression keywords.

¤t the currently executing co-expression.

&main the co-expression that initially began executing
the program.

&source the co-expression that activated the current co-ex-
pression.

Icon Programming Handbook

150 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 151

Chapter 17 Windows and Graphics

Warning: Much of this material was tested with a beta version of Icon for Win-
dows 3.1. It may change. Windows and graphics are a relatively new feature of
Icon. They are not available in all versions or implementations of Icon, and they
may be subject to change. They are implemented under X-windows.

17.1 Windows

You can create windows in Icon to use for interaction with a user at a video ter-
minal. Windows are objects of data type window. You create a window by
opening it. A window has a number of attributes, some of which you can set to
new values. You can read and write text through windows. You can draw two-
dimensional figures in windows. You can receive events, e.g. mouse clicks,
through windows.

Some of the graphics functions are implemented internally within the Icon run-
time system. Others are implemented in Icon and must be linked in from the
graphics section of the Icon Program Library. If you are using windows, include

link graphics

declaration in your program.

You create and open a window with the function WOpen. WOpen returns a win-
dow object. The parameters to WOpen are strings that assign values to window
attributes. Each attribute assignment is a string of the form
"attribute_name=value". Typically the minimum attributes that would be spec-
ified when opening a window would be the width and height of the window, al-
though a window defaults to enough space for twelve lines of eighty columns
of text.

Table 54 Common window attributes for WOpen.

"bg=color" selects the background color for the window. The default
is "bg=white". Colors are discussed in Section 17.6
on page 168.

"fg=color" selects the foreground color for the window. The default
is "bg=black". Colors are discussed in Section 17.6
on page 168.

"height=h" height of the window in pixels. Defaults to enough for 12
lines of text.

Icon Programming Handbook

152 Copyright © 1996. Thomas W. Christopher

The functions that operate on windows take the window object as their first pa-
rameter. However, the window parameter is optional. If it is omitted, the func-
tion uses the value of the keyword &window.

Keyword &window initially has the value &null. If &window has the value
&null, then WOpen will assign it the newly created window. If you only intend
to use one window, you never need to use the window parameter to the graphics
functions.

Procedure WClose will close a window. WDone will wait until a Q or q char-
acter is typed in the window and then close it—Q being an Icon convention for
"quit."

"pos=x,y" equivalent to: "posx=x","posy=y". Defaults to
"pos=0,0", i.e. the window is drawn at the upper left
corner of the screen.

"posx=x" the horizontal position of the left edge of the window on
the screen.

"posy=y" the vertical position of the top edge of the window on the
screen.

"size=w,h" equivalent to:"width=w","height=h"

"width=w" width of the window in pixels. Defaults to enough for 80
columns of text.

Table 55 Functions to open and close windows.

WAttrib(
 W,s1,s2,...)

sets and queries the attributes of a window. Each
string is either "name" or "name=value"
where name is the name of an attribute and value is
a string representation of a value for that attribute.
First WAttrib will perform assignments for all the
"name=value" parameters, then it will generate
the values for all the attributes named, left to right.

Generates the values of the attributes. Fails on an
attempt to set an invalid bg, fg, font, or pat-
tern. Gives a run-time error on any other invalid
value or name.

WClose(W) closes the window W. The window is removed
from the screen. Closing &window sets &window
to &null.

WDone(W) waits until a Q (or q) is typed in the window, then
closes it.

Table 54 Common window attributes for WOpen.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 153

You can set attributes after a window has been opened by calling WAttrib and
specifying the new attribute assignments as its parameters. You can also exam-
ine the current values of a windows attributes by calling WAttrib with just one
string parameter giving the name of the attribute; WAttrib will return the current
value of that attribute.

17.2 Graphics

17.2.1 Co-ordinates and angles

The coordinates are in pixels from the upper left of the window. The upper left
has the x,y coordinates (0,0). The x coordinate increases to the right; the y co-
ordinate increases downwards. This differs from the convention of graphing
mathematical functions where the y coordinate would grow upwards.

If you wish to have the (0,0) point be somewhere else than the upper left, you
can set the window attributes dx and dy. Attribute dx will be automatically add-
ed to any x coordinate to calculate the window-relative coordinate, and dy will
be added to the y coordinate. For example,

WOpen("size=200,200","dx=100","dy=100")

will open a 200 by 200 pixel window, but position (0,0) will appear to be in the
center of it.

Angles are measured in radians. When used as parameters to functions, angle 0
is horizontal to the right and angles increase clockwise from there.

17.3 Lines

17.3.1 Line-drawing functions

Icon provides a collection of functions to draw points, lines, curves, and closed
figures in a window. The functions take a flat series of x and y coordinates in
the window. By "flat" we mean that a point is not represented by a list of two
coordinates, nor a line by a list of two points, but rather the x and y coordinates
of the endpoints of a line are all at the top level in the function’s parameter list.
You will probably find that you will represent points and lines internally as
structured objects and then have to concatenate a list of the coordinates to pass
to the drawing functions using the function ! list form of invocation.

WOpen(
 s1,s2,...,sn)

opens a new window with the values of its at-
tributes given by the strings. Each string is of the
same form as a value assignment in WAttrib:
"name=value" where name is the name of an
attribute and value is a string representation of a
value for that attribute. Returns the window. As-
signs the window to &window if &window is pre-
viously &null.

Table 55 Functions to open and close windows.

Icon Programming Handbook

154 Copyright © 1996. Thomas W. Christopher

Table 56 provides a list of the basic graphics functions Remember, the window
parameter is optional: it defaults to the value of keyword &window. The basic
attributes used in line drawing are shown in Table 57..

Table 56 Basic line-drawing functions.

Clip(W,x,y,w,h) Set a clipping rectangle with a cor-
ner at position (x,y), and width w
and height h. The default w and h
values are to the right and bottom
edges of the window. Subsequent
drawing outside the bounds will
have no effect. When called without
the (x,y) parameters, clipping is
turned off and the entire canvas can
be written.

Returns the window, W.

DrawArc(W,x,y,w,h)
DrawArc(
 W,x,y,w,h,theta,phi)

Draws an ellipse in the rectangle of
width w and height h and a corner at
position (x,y). If theta and phi are
given, it draws an arc of the ellipse
starting at angle theta and extending
for angle phi.

Returns the window, W.

DrawCircle(W,x,y,r)
DrawCircle(
 W,x,y,r,theta,phi)

Draws a circle with center at posi-
tion (x,y) and radius r. If theta and
phi are given, it draws an arc of a
circle starting at angle theta and ex-
tending for angle phi.

Returns the window, W.

DrawCurve(
 W,x1,y1,x2,y2,...,xn,yn)

Draws a smoothed curve from
(x1,y1) to (xn,yn) passing through
the intermediate points in order. If
xn=x1 and yn=y1, then the curve
will be closed and smoothed
through point (x1,y1) as well.

Returns the window, W.

DrawLine(
 W,x1,y1,x2,y2,...,xn,yn)

Draws a connected sequence of
straight lines. A straight line is
drawn from point (x1,y1) to (x2,y2),
then a line from (x2,y2) to (x3,y3),
and so on to (xn,yn).

Returns the window, W.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 155

DrawPoint(
 W,x1,y1,x2,y2,...,xn,yn)

Draws a point at each position (x,y)
given.

Returns the window, W.

DrawPolygon(
 W,x1,y1,x2,y2,...,xn,yn)

Equivalent to DrawLine with a final
line segment back to (x1,y1).

Returns the window, W.

DrawRectangle(
 W,x1,y1,x2,y2)

Draws the rectangle with opposite
corners (x,y) and (x+w,y+h). Pa-
rameters w and h default to the right
and bottom edges of the window.

Returns the window, W.

DrawSegment(
 W,x1,y1,x2,y2,...,xn,yn)

Similar to DrawLine, except it
draws disconnected line segments
between pairs of points: (x1,y1) to
(x2,y2), then (x3,y3) to (x4,y4), etc.

Returns the window, W.

EraseArea(W,x,y,w,h) Fills the rectangle with opposite
corners (x,y) and (x+w,y+h) with
the background color. Parameters w
and h default to the right and bottom
edges of the window.

Returns the window, W.

Table 57 Attributes for line drawing.

"dx=num" integer to be added to each x parameter passed to
a graphics function to determine the actual pixel
position in the window.

"dy=num" integer to be added to each y parameter passed to
a graphics function to determine the actual pixel
position in the window.

Table 56 Basic line-drawing functions.

Icon Programming Handbook

156 Copyright © 1996. Thomas W. Christopher

17.3.2 Examples of line drawings

Example. The differences in some of the line-drawing functions are shown in
Figure 38 on page 157. The code to draw the lines is shown in Figure 37 on page
156. Notice that DrawCurve is much like DrawLine, except that the lines are
curved and the junctions between the line segments are smoothed. When the ini-
tial point is equal to the last point in DrawCurve, the curve is also smoothed
through that point.

Figure 37 Drawing lines.

link graphics
procedure main()
WOpen("size=400,350") | stop("can’t open win-
dow")
L:=[]
every i:=10 to 50 by 20 & j:=10 to 30 by 20 do {

put(L,j,i)
}
DrawLine!L

DrawString(L[7]+10,L[8],"DrawLine")
every L[2 to *L by 2] +:=60
DrawSegment!L

DrawString(L[7]+10,L[8],"DrawSegment")
every L[2 to *L by 2] +:=60
DrawPolygon!L

DrawString(L[7]+10,L[8],"DrawPolygon")
every L[2 to *L by 2] +:=60
DrawCurve!L

DrawString(L[7]+10,L[8],"DrawCurve")
every L[2 to *L by 2] +:=60
DrawCurve!(L ||| [L[1],L[2]])

DrawString(L[7]+10,L[8],"DrawCurve, with

"linestyle=s" string describing the style of the lines to be drawn.
The options differ based on the underlying graph-
ics system. For X-windows, the options are sol-
id, dashed, and striped. The dashed lines
have gaps. The striped lines are dashed with
their gaps filled with the background color.

In the beta version of Icon for Windows, the op-
tions are dashed, dotted, solid, dash-
dotted, and dashdotdotted. Style
striped is treated as dashed.

The default style is solid.

"linewidth=num" number specifying the width of the lines drawn.

Table 57 Attributes for line drawing.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 157

loop-back")

WriteImage("lines.gif")
WDone()
end

Example. Figure 39 on page 157 shows several closed figures. The diamond
was drawn with a DrawPolygon. In the top figure, the outer curve was drawn by
DrawCircle. The curve between them was drawn by DrawCurve. The bottom
figure is the result of DrawRectangle and DrawArc with the same parameters.

Example. The spiral in Figure 41 on page 158 was drawn by the code in Figure
40 on page 157. It is done by drawing arcs of concentric circles while varying
the angles theta and phi.

Figure 40 Draw a spiral.

link graphics
procedure main()
 local r

Figure 38 Lines drawn by Figure 37

Figure 39 Closed figures.

Icon Programming Handbook

158 Copyright © 1996. Thomas W. Christopher

 WOpen("size=400,400") | stop("can’t open window")
 WAttrib("dx=200","dy=200")
 every r := 5 to 180 by 2 do

DrawCircle(0,0,r,dtor(r),2*dtor(r))
 WriteImage(&window,"spiral.gif",-200,

-200,400,400)
 WDone()
end

Example. Figure 42 on page 158 explores more precisely what the two angles
mean in DrawCircle and DrawArc. The top figure explores circles and the bot-
tom, ellipses drawn with DrawArc.Lines at angles theta and theta+phi are drawn
from the center of both figures. The top shows a circle and an arc of a slightly
smaller concentric circle. The angles clearly mark the beginning and ending po-
sitions of the arc. For the bottom figure, an arc is drawn in a rectangle, but the
angles from the center of the rectangle do not correspond to the beginning and
ending of the arc.

Figure 41 Spiral—the effects of angles.

Figure 42 Angles in DrawCircle and DrawArc.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 159

17.4 Filled areas

17.4.1 Basic area-filling functions.

You can draw several kinds of areas and have them filled-in with the back-
ground color or a pattern. The relevant functions are given in Table 58. Several
examples of filled figures are shown in Figure 43

Table 58 Functions for filling areas.

EraseArea(W,x,y,w,h) Fills the rectangle with opposite cor-
ners (x,y) and (x+w,y+h) with the
background color. Parameters w and
h default to the right and bottom edg-
es of the window.

FillArc(W,x,y,w,h) fills an ellipse within the rectangular
area which has one corner at position
(x,y) and width w and height h.

FillArc(
 W,x,y,w,h,theta,phi)

fills a wedge of an ellipse within the
rectangular area which has one cor-
ner at position (x,y) and width w and
height h. The wedge subtends the arc
that would be drawn by
DrawArc(W,x,y,w,h,theta,
phi).

FillCircle(W,x,y,r) fills a circle with center (x,y) and ra-
dius r.

FillCircle(
 W,x,y,r,theta,phi)

fills a wedge of a circle with center
(x,y) and radius r. The wedge starts
at angle theta and extends for angle
phi.

FillPolygon(
 W,x1,y1,x2,y2,...,xn,yn)

fills the contained areas in the poly-
gon that would be drawn by
DrawPolygon(W,x1,y1,
x2,y2, ...,xn,yn)

FillRectangle(W,x,y,w,h) fills the rectangle with a corner at
(x,y) and width w and height h.

Pattern(W,s) establishes the pattern to be used for
Fill... function calls. The pat-
tern specification s may be one of the
predefined names shown in Figure
44 on page 161, or it may be a bi-lev-
el image as described in Section
17.4.4 on page 161.

Icon Programming Handbook

160 Copyright © 1996. Thomas W. Christopher

17.4.2 Fill style

You choose what style fill to use with the window attribute fillstyle :

• solid—the area is filled with the foreground color.

• textured—the area is filled with the fill pattern. All pixels in the area are
overwritten with pixels from the pattern.

• masked—the foreground colors in the pattern overwrite the pixels in the
area. The background color in the pattern leaves the pixels in the area un-
changed.

So if you are going to use patterns, you must set the fillstyle attribute to
something other than solid.

17.4.3 Patterns

The actual pattern used is specified by window attribute pattern. You will
typically set the attribute by calling the procedure

Pattern(W,spec)

The pattern specification can be one of the predefined pattern names shown in
Figure 44 or it can be a bi-level image.

Figure 43 Some filled figures

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 161

17.4.4 Bi-level images

A bi-level image is a rectangular bit pattern where 1 specifies the foreground
color and 0 specifies the background color. A bi-level image is itself specified
by a string of the form:

"width,#hexdata"

The width is an integer specifying how wide the pattern is, in pixels. The
hexdata is comprised of hexadecimal digits specifying four bits apiece. The
four bits specify up to four horizontally contiguous pixels, the least-significant
bit specifying the leftmost.

While the number of pixels horizontally is specified by width, the number ver-
tically is deduced from the number of hexadecimal digits provided. The pattern
is filled in by taking the hexadecimal digits left to right to fill a row, then if there
are any more hexadecimal digits, starting the next row of pixels with the next
hex digit. If width is not evenly divisible by four, some bits specified by the last
hex digit in a row will be ignored.

When used as a fill, the bi-level image is tiled to fill the area required. If you are
just going to fill a rectangular area exactly the size of the bi-level image, you
can use the function DrawImage:

DrawImage(W,x,y,s)

which will place the bi-level image on the screen with its upper left corner at
position (x,y). When s has the form

"width,#hexdata"

it is written as textured: the 1 bits are written as the foreground color and the
0 bits are written as the background color. If s has the form

"width,~hexdata"

(i.e. ~ is substituted for #, but otherwise the specification is identical) it is writ-
ten as masked: the 1’s are written as foreground color but the 0’s are not writ-
ten, leaving those pixels unmodified.

Figure 44 Fill patterns.

Icon Programming Handbook

162 Copyright © 1996. Thomas W. Christopher

A full description of DrawImage is given in Table 67 on page 174.

17.4.5 Fill attributes

Window attributes related to filling areas are shown in Table 59

17.4.6 Example of filled areas

Figure 45 shows a collection of beveled figures created by writing filled rectan-
gles and circles. The code producing this figure is shown in Figure 46. The trick
is to write lighter and darker copies of the figures offset slightly up to the left
and down to the right, and then the figure itself in the background color in the
center.

Figure 46 Code for beveled figures.

Table 59 Fill-related attributes.

"bg=s" string s specifies the background color.

"drawop=s" string s specifies either "copy" or "reverse". With
"copy" the new pixels replace the existing pixels. With
"reverse", the new pixels will combine with the exist-
ing pixels in an exclusive-or fashion converting fore-
ground-colored pixels into background-colored and
vice versa.

"fg=s" string s specifies the foreground color.

"fillstyle=s" string s specifies whether a pattern is to be used when
drawing filled figures, and if so, how. The options are
"solid", "textured", and "masked". If
"solid" is specified, figures are filled with the fore-
ground color. If "textured" is specified, both the
foreground and background colors of the pattern are
used. If "masked", only the foreground colors of the
pattern are written; pixels corresponding to the back-
ground colors are left unchanged.

The default is "solid".

"pattern=s" string s specifies the fill pattern to be used, either a pat-
tern name (Figure 44) or a bi-level image (section
17.4.4).

"reverse=s" string s is either "on" or "off". When changed
from "on" to "off" or "off" to "on", the values
of bg and fg are swapped.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 163

link graphics
procedure main()
 local r,flip
 WOpen("size=225,400","bg=very light gray") |
 stop("can’t open window")

 bevrectangle(10,10,100,100,-1)
 bevrectangle(35,35,50,50,1)

 bevcircle(160,160,50,-1)
 bevcircle(160,160,25,1)

 flip:=-1
 every r:=90 to 5 by -5 do {
 bevcircle(100,300,r,flip)
 flip:=-flip
 }
 WriteImage("bevfig.gif")
 WDone()
end

procedure bevrectangle(x,y,w,h,d)
 local oldfg,nw,se
 oldfg:=Fg()
 nw:="white"
 se:="grey"
 if d<0 then {nw:=:se; d:=-d}
 w-:=d
 h-:=d
 Fg(nw)
 FillRectangle(x,y,w,h)
 Fg(se)
 x+:=d

Figure 45 Beveled figures.

Icon Programming Handbook

164 Copyright © 1996. Thomas W. Christopher

 y+:=d
 FillRectangle(x,y,w,h)
 Fg(Bg())
 FillRectangle(x,y,w-d,h-d)
 Fg(oldfg)
return
end

procedure bevcircle(x,y,r,d)
 local oldfg,nw,se
 oldfg:=Fg()
 r:=r-d
 nw:="white"
 se:="grey"
 if d<0 then {nw:=:se; d:=-d}
 Fg(nw)
 FillCircle(x-d,y-d,r)
 Fg(se)
 FillCircle(x+d,y+d,r)
 Fg(Bg())
 FillCircle(x,y,r)
 Fg(oldfg)
return
end

17.5 Text

You can treat a window as a video terminal using functions WWrite(),
WWrites(), WRead(), and WReads() for write(), writes(),
read(), and reads(). The text-related functions are shown in Table 60.

Table 60 Text-related window functions.

DrawString(W,x,y,s) writes the string s starting at position (x,y)
in window W without modifying the text cur-
sor.

Font(W,s) sets the font in window W to that specified by
string s, or fails if it cannot be done.

GotoRC(W,r,c) sets the text cursor in window W to row r and
column c. GotoRC(W) sets the row and
column to 1,1.

GotoXY(W,x,y) sets the text cursor position in window W to
position (x,y). GotoXY(W) sets the posi-
tion to (0,0).

TextWidth(W,s) returns the number of pixels of width that
string s would require if written in window
W.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 165

A window is by default drawn large enough for twelve lines of eighty columns
of text.

There is a text cursor that starts at the upper left corner of the window. The cur-
sor is moved as text is written or read, and if it would go off the bottom, the win-
dow scrolls.

The text cursor is not visible by default. You must set the window attribute
cursor to on to see the cursor (and set it back to off to make the cursor in-
visible), see Table 61. E.g.

WAttrib(W,"cursor=on")
WAttrib(W,"cursor=off")

The cursor is the underscore character, does not blink, and is only displayed if
attribute cursor is set on and Icon is waiting input WRead or WReads.
(Good luck finding it.)

WRead(W) reads a line typed into window W in the man-
ner of read. Displays the text cursor and
echoes the characters typed if window at-
tributes cursor and echo allow it.

WReads(W,i) reads i characters (default one) typed into
window W in the manner of reads. Displays
the text cursor and echoes the characters
typed if window attributes cursor and
echo allow it.

WWrite(
 W,s1,s2,...,sn)

writes the strings s1, s2, .., sn in window W
in the manner of write—followed by mov-
ing the cursor to the beginning of the next
line, scrolling if required.

WWrites(
 W,s1,s2,...,sn)

writes the strings s1, s2, .., sn in window W
in the manner of writes—scrolling if re-
quired by any \n characters written.

Table 61 Window attributes related to text.

"ascent" the number of pixels the current font extends above
the base line. Read only.

"descent" the number of pixels the current font extends below
the base line. Read only.

"col=num" column of the text cursor (in characters).

"cursor=s" controls the visibility of the text cursor in the screen:
"on" or "off", "off" by default.

Table 60 Text-related window functions.

Icon Programming Handbook

166 Copyright © 1996. Thomas W. Christopher

The cursor may be moved explicitly to a screen position with

GotoRC(W,row,col)

where the optional parameter W specifies the window, row specifies the row,
and col specifies the column, or

GotoXY(W,x,y)

where the optional parameter W specifies the window, and x and y specify the
pixel position. Notice that row and col specify the distance down and across,
while x and y specify the position across and down.

Rather than writing

GotoXY(W,x,y)
WWrites(W,text)

you can use

DrawString(W,x,y,text)

which will not change the cursor position. DrawString is probably more ap-
propriate for writing captions on graphics.

When you are reading text in a window, the characters the user types will only
be displayed on the screen if window attribute echo is set to on. If echo is
off, the characters will not be written. By default, characters will be echoed.

You can select the font that will be displayed in a window. You can change the
font by calling function

Font(s)

"echo=s" flag controlling whether characters typed to WRead
and WReads are displayed on the screen: "on" or
"off", "on" by default.

"font=s" current text font.

"fheight" height of the current text font, top to bottom. Read
only.

"fwidth" width of the current text font. Read only.

"leading=num" the number of pixels between successive lines of text.

"row=num" row of the text cursor (vertical position in characters).

"x=num" horizontal position of the text cursor (in pixels).

"y=num" vertical position of the text cursor (in pixels).

Table 61 Window attributes related to text.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 167

which will set the font to that specified by the string s.

Fonts are specified by strings of the form

family,style,size

where family gives the family name of the font, style gives such characteristics
as bold, italic, or bold,italic, and size specifies the size of the font. The style and
size parts of the specification are optional.

There are four built-in font families, shown in Table 62. These, in four styles
and several sizes, are shown in Figure 47, along with a the non-portable family
Times.

Windows have a number of attributes related to the currently active font, see Ta-
ble 61. Attributes fheight and fwidth give the maximum height and width
of the current font. The a proportionally-spaced font, some characters may re-
quire less space.

Characters extend up- and down-wards from a line.Attribute ascent gives the
number of pixels upwards the font extends; descent the number of pixels
downwards. Attribute leading specifies the distance between successive
lines of text. Only the leading attribute can be assigned new values; the oth-
ers are fixed for a font. Figure 48 shows some of the font attributes. The two sol-

Table 62 Built-in font families

monospaced proportionally
spaced

sans-serif mono sans

serif typewriter serif

Figure 47 Fonts.

Icon Programming Handbook

168 Copyright © 1996. Thomas W. Christopher

id lines are the base-lines of text leading pixels apart. The two dashed lines
are drawn at the first baseline minus ascent and plus descent pixels.

Example. The code in Figure 49 displays a moving sign. The trick is to repeat-
edly write the message over one pixel to the left each time. The message text
must end in a blank to clean out the rightmost pixels. A certain amount of com-
plexity in the code is the result of GotoXY refusing to set the cursor position
outside the window: we established a clipping region within the window and
shifted the message one character at a time.

17.6 Colors

17.6.1 Color specifications and names

Colors are specified in the red-green-blue system by giving the intensities of
each of these components. Each intensity is specified in 16 bits: The minimum

Figure 48 Font attributes.

link graphics
procedure main()
 local msg,fontwidth
 WOpen("size=300,40") |

 stop("can’t open window")
 Font("TimesRoman,bold,24") |

 stop("can’t set font")
 fontwidth:=WAttrib("fwidth")
 Clip(fontwidth,1,

WAttrib("width")-2*fontwidth,
WAttrib("height"))

 repeat {
 msg := "the quick brown fox jumps_

 over the lazy dog "
 msg := repl(" ",

WAttrib("width")/TextWidth(" ")+2)|| msg
 while *msg>0 do {
 every GotoXY(

fontwidth-(1 to TextWidth(msg[1])),
 30) do {
WWrites(msg)

}
 msg:=msg[2:0]
 }
 }
end

Figure 49 Moving sign.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 169

intensity is zero; the maximum is 65535. The colors are specified by strings giv-
ing either a decimal or a hexadecimal specification of the intensities red, green,
and blue in one of the forms:

"R,G,B"
"#rgb"
"#rrggbb"
"#rrrgggbbb"
"#rrrrggggbbbb"

where R, G, and B are decimal numbers in the range 0-65535 and r, g, and b
represent hexadecimal digits.

Rather than using the numeric color specification, you can specify colors using
names of the form:

lightness saturation modifier hue

There are fourteen built-in hues that can be referred to by name; they are shown
in Table 63.

The grammar in Figure 50 shows the full form of a color name. Only the hue is
required.The modifier is either a hue or a hue with the suffix -ish written in cor-

Table 63 The built-in hues.

hue decimal specification

black 0,0,0

blue 0,0,65535

brown 32767,16383,0

cyan 0,65535,65535

grey 32767,32767,32767

green 0,65535,0

magenta 65535,0,65535

orange 65535,16383,0

pink 65535,32767,40959

purple 32767,0,65535

red 65535,0,0

violet 49151,32767,65535

white 65535,65535,65535

yellow 65535,65535,0

Icon Programming Handbook

170 Copyright © 1996. Thomas W. Christopher

rect English (e.g. red becomes reddish). If the color specifies two hues, the ac-
tual hue is half way between them. If it specifies a huish hue, then the actual hue
is three-quarters of the way from the first to the second. The saturation pale is
a synonym for very light, and deep, for very dark. The elements of
a color name are separated by either blanks or hyphens (separator).

Figure 50 Grammar for color names.

colorName = lightness_opt saturation_opt
 modifier_opt hue.

lightness_opt = lightness separator | .
lightness = very separator light | pale

| light
| medium
| dark
| very separator dark | deep
.

saturation_opt = saturation separator | .
saturation = weak

| moderate
| strong
| vivid
.

modifier_opt = modifier separator | .
modifier = hue | huish .
hue = black| blue| brown

| cyan| gray| green
| magenta| orange| pink
| purple| red| violet
| white| yellow
.

huish= blackish| bluish| brownish
| cyanish| grayish| greenish
| magentaish| orangish| pinkish
| purplish| reddish| violetish
| whitish| yellowish
.

separator = " " | "-" .

An example of how lightness and saturation modify a color is shown in Table
64.

Table 64 Lightness and saturation.

color name specification

very light weak red 57343,51881,51881

very light moderate red 60073,49151,49151

very light strong red 62804,46420,46420

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 171

17.6.2 Color correction

As explained in Foley, et al.1, CRTs and film are non-linear, and the intensity,
I, is related to the level applied to the pixel, V, by the formula

where K and γ (gamma) are constants.

Icon allows you to select a gamma correction to be used when Icon passes color
specifications to the underlying graphics system, with 1.0 giving no color cor-
rection and larger values giving less saturated, lighter colors.

1. Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Huges, Computer Graphics: Princi-
ples and Practice, Second Edition, Addison Wesley, 1990, p565.

very light vivid red 65535,43689,43689

light weak red 49151,38228,38228

light moderate red 54612,32767,32767

light strong red 60073,27306,27306

light vivid red 65535,21845,21845

medium weak red 40959,24575,24575

medium moderate red 49151,16383,16383

medium strong red 57343,8191,8191

medium vivid red 65535,0,0

dark weak red 27306,16383,16383

dark moderate red 32767,10922,10922

dark strong red 38228,5461,5461

dark vivid red 43690,0,0

very dark weak red 13653,8191,8191

very dark moderate red 16383,5461,5461

very dark strong red 19114,2730,2730

very dark vivid red 21845,0,0

Table 64 Lightness and saturation.

color name specification

I K V
γ⋅=

Icon Programming Handbook

172 Copyright © 1996. Thomas W. Christopher

17.6.3 Palettes, images

Palettes allow you to refer to colors or shades of gray with single characters. The
size of &cset, 256 in current Icon implementations, limits the number of colors
or graytones possible. You can use palettes instead of bit maps in the DrawIm-
age function to draw rectangular, colored or grayscale images in the window.

Palettes are predefined; you don’t get to create your own. The grayscale palettes
are named "g2", "g3", "g4", ..., "g64". The color palettes are named "c1",
"c2", "c3", "c4", "c5", and "c6".

The function DrawImage (see 17.4.4 on page 161) can draw a color or grayscale
image as follows:

DrawImage(W,x,y,"width,palette,chars")

will fill the rectangular area in window W with a corner at position (x,y) and
width width. The colors specified associated with the characters chars in pal-
ette palette are used to fill in the pixels from left to right, top to bottom.

The characters in gray palette gi are the first i characters in the string2

"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz{}"

The first character is black, the last character is white, and the characters in be-
tween represent uniformly spaced shades of gray.

The color palette c1 is rather arbitrary in its design. It is shown in Table 65
which is based on a table in Appendix F of Icon Project manual IPD255.3 The
table was created by constructing color names from the column headings con-
catenated with the row headings and asking function PaletteColor what charac-
ter is closest to that color in the c1 palette. The gray areas were omitted from the
table in IPD255 as not being part of the designed palette.

2. Note we are using Icon continuation conventions: an underscore as the last character of a line continues
a string with the first nonwhitespace character of the next line. The underscore is not part of the string.

3. Clinton L. Jeffery, Gregg M. Townsend, Ralph E. Griswold, Graphics Facilities for the Icon Program-
ming Language, Version 9.0, Icon Project, University of Arizona, IPD255, July, 1994.

Table 65 Color palette c1.

very
dark

dark medium light very
light

weak

black 0 0 0 2 4 0

gray 1 2 3 4 5 3

white 2 4 6 6 6 6

brown ! p ? C 9 2

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 173

The color palettes "c2" through "c6" are the uniform color palates. The
basic idea is that palette cn gives you n levels of intensity of each of the colors
red, green, and blue. You can form n3 colors by combining intensities of their
red, green, and blue components.

The first n3 characters of palette cn select the colors. The intensity levels in the
cn palette are numbered from 0 through n-1. If P is the string of characters in
the palette and r, g, and b are the intensity levels for red, green, and blue, then
the color with intensities r,g,b is selected by character

P[r*n*n+g*n+b+1]

Every color with equal intensities of red, green, and blue is a shade of gray, but
they are too few to give good rendering of grayscale images, so additional
shades of gray were added. The characters for these additional grays are tacked
on to the end of the palette.

The cn palette adds an additional n-1 shades of gray between each successive

red n N A a # @

orange o O B b $ %

red-yellow p P C c & |

yellow q Q D d , .

yellow-
green

r R E e ; :

green s S F f + -

green-cyan t T G g * /

cyan u U H h ‘ '

cyan-blue v V I i < >

blue w W J j ()

blue-
magenta

x X K k []

purple x X K k []

magenta y Y L l { }

magenta-
red

z Z M m ^ =

violet X K 8 [6 4

pink N A 7 ^ 6 4

Table 65 Color palette c1.

Icon Programming Handbook

174 Copyright © 1996. Thomas W. Christopher

rgb gray level. That gives n2-2n+1 additional characters attached to the end of
the palette representing the additional levels of gray and a total of n2-n+1 gray
levels in total.

Table 66 shows the characters in the color palettes.

There are four functions to use with palettes: PaletteColors, PaletteChars, Pal-
etteGrays, and PaletteKey. Their meanings are shown in Table 67.

Table 66 Color palettes

Palette Color Characters Additional grays

c1 (see Table 65) "0123456"

c2 "kbgcrmyw" "x"

c3 "@ABC...XYZ" "abcd"

c4 "012...89ABC...
YZabc...yz{}"

"$%&*+-/?@"

c5 "\x00\x01\x02...yz{|" "}~\d\x80...
\x8a\x8b\x8c

c6 "\x00\x01\x02...
\xd6\xd7"

"\xd8\xd9\xda...
\xee\xef\xf0"

Table 67 Palette functions.

DrawImage(W,x,y,s) will fill the rectangular area in window
W with an upper left corner at position
(x,y) with the image specified by string
s. String s has one of three forms:

"width,#hexdata"
"width,~hexdata"
"width,palette,chars"

In all cases, the width width specifies
the width of the rectangular area to fill.
The height is determined by the number
of characters or bits to write.

DrawImage(W,x,y,
 "width,#hexdata")

the hexdata is a bi-level image.It is writ-
ten as textured: the 1 bits are written
as the foreground color and the 0 bits
are written as the background color.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 175

DrawImage(W,x,y,
 "width,~hexdata")

the hexdata is a bi-level image. It is
written as masked: the 1’s are written
as foreground color but the 0’s are not
written, leaving those pixels unmodi-
fied.

DrawImage(W,x,y,
 "width,palette,chars")

the colors specified associated with the
characters chars in palette palette are
used to fill in the pixels from left to
right, top to bottom. Character \377 and
character ~ (if it is not contained in the
palette) specify transparent pixels
which will not overwrite the previous
value. Commas and spaces, if the pal-
ette does not contain them, can be in-
serted to ease readability; they will not
display.

PaletteChars(palette) returns as a character string the charac-
ters in the palette. For a grayscale pal-
ette, the characters will represent the
intensities of gray from black to white
in order. For uniform color palettes, cn,
the first n3 characters can be indexed by
n intensity levels (0, 1, ..., n-1) for red,
green, and blue, to select the character
representing that combination of inten-
sities, P[r*n*n+g*n+b+1]. The last n2-
2n+1 characters represent the additional
gray levels in order from darkest to
lightest. Since the trailing grays have
gaps (the grays in the regular palette), if
you intend to index into the grays, use
function PaletteGrays to get a
complete list.

PaletteColor(
 palette,s)

returns the color in palette represented
by the single character s.

PaletteGrays(palette) returns a string containing in order from
black to white the characters from the
palette representing levels of gray.

PaletteKey(palette,s) returns a character from the palette
which is close to the color specified by
string s.

Table 67 Palette functions.

Icon Programming Handbook

176 Copyright © 1996. Thomas W. Christopher

17.6.4 Mutable colors

Icon gives you access to your system’s color map, if it is changeable, via muta-
ble colors. You can allocate a mutable color and change the color it represents
repeatedly. Whenever you assign a mutable color a new actual color, all the pix-
els written with that mutable color change to the new color. (The internal repre-
sentation of a mutable color is called a color map entry.)

You allocate a mutable color assigning it the initial color s with function
NewColor(s). NewColor returns a negative integer to represent the muta-
ble color. You can assign it a different color with the function Color(n,s),
where n is the mutable color and s is a color specification. On some systems,
when a color map entry is no longer needed, it can be returned to a pool for sub-
sequent reallocation with the function FreeColor(n).

17.7 Pixel rectangles, moving, saving, restoring

There are several functions that operate on rectangular areas of pixels. You can
copy such an area, write it to a file, read it from a file, or examine the pixels in

ReadImage(W,s1,x,y,s2) will read the image in the file named s1
into the window W with its upper-left
corner at position (x,y). If s2 is speci-
fied, the colors in the image are convert-
ed into colors in palette s2.

Table 67 Palette functions.

Table 68 Mutable color functions.

NewColor(W,s) allocates a changeable color map entry for a
new mutable color and assigns it initially the
color specified by s, and returns a small neg-
ative integer to represent the mutable color.
Fails if no changeable color map entry is
available.

Color(
 W,n1,s1,n2,s2,...)

sets each mutable color ni to the correspond-
ing color specified by si.

FreeColor(n1,...) frees the color map entries for all ni. Not
available in all implementations. Bad things
may happen if any pixels are still assigned
the color being freed.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 177

it. These functions are given in Table 69

17.8 Events

Mouse operations in a window or characters typed in a window when no WRead
or WReads is pending cause events to be queued. You can process an event by
calling the function Event(window) which will return the event code and will
set the values of certain keywords.

Event() will wait for an event to occur. If you don’t want to wait, you can
execute *Pending(window) which will tell you the length of the event queue
for the window. If it is zero, there are no events pending. However, each event
is currently represented by three elements in the list, so the length of the pending
list is three times the number of events queued up.

The event codes returned for keyboard characters are single character strings.
The events returned for the mouse buttons and for some other keyboard keys are
integers. The integers corresponding to certain events are the values of some
keywords. For other special keys, there is a file of definitions, keysyms.icn,
that you can include to refer to the key by name rather than number:

$include "keysyms.icn"

Table 69 Pixel rectangle functions.

CopyArea(
 W1,W2,x1,y1,w,h,
 x2,y2)

copy a rectangular area of width w and height
h from position (x1,y1) in W1 to position
(x2,y2) in window W2. The (x,y) values
specify the upper-left corner. If W2 is omit-
ted, W1 is both the source and destination
window. If W1 and W2 are both omitted,
&window is the source and destination.

Pixel(W,x,y,w,h) generates the colors of the pixels in the rect-
angle of width w and height h with its upper
left corner in position (x,y) of window W. The
pixels are generated by rows, left to right, top
to bottom.

ReadImage(W,s1,x,y)
ReadImage(
 W,s1,x,y,s2)

will read the image in the file named s1 into
the window W with its upper-left corner at po-
sition (x,y). If s2 is specified, the colors in
the image are converted into colors in palette
s2.

WriteImage(
 W,s,x,y,w,h)

writes the rectangle of pixels of width w and
height h with its upper left corner in position
(x,y) of window W into the file named s. Nor-
mally Icon writes the file in GIF format, but
it may allow other extensions on the file
name to choose other formats.

Icon Programming Handbook

178 Copyright © 1996. Thomas W. Christopher

There are three keyboard keys that do not themselves cause events but rather
modify other events: SHIFT, CONTROL, and META (or ALT). The states of
those keys when another event occurs are preserved in the keywords &shift,
&control, and &meta.

Figure 51 is a program that will display in a window and write to a file the
events that occur in the window. The call to Event returns the event code and

sets the values for some keywords. Keywords &x and &y give the position in
the window of the cursor when the event occurred. Keyword &interval, on
some systems, gives the time in milliseconds since the previous event occurred.
The keyword &shift succeeds yielding &null if the SHIFT key was pressed
during the event, but fails if it wasn’t. Similarly, &meta and &control report
the META (ALT) and CONTROL keys.

Figure 52 shows a program to draw circles in a window under mouse control.
The repeat loop is an example of event-driven programming. A "Q" typed on
the keyboard will break out of the loop. Pressing the left button of the mouse
saves the cursor’s x and y position as the center of the circle. Holding down the
button and dragging the mouse draws a circle out to the current mouse position.
Releasing the button leaves the circle drawn. As the mouse is moved with the
left button held, the circle is shown. The trick for showing the circle uses the
"drawop=reverse" attribute assignment. A circle is drawn. Then as the mouse
moves, the previous circle is redrawn, which erases it, and the new circle is
drawn. As each circle is finished, it’s center is marked with crossed lines and

link graphics
procedure main()
 WOpen("size=600,400") | stop("can’t open window")
 f:=open("tstev1.txt","w")
 repeat {
 e:=Event()
 WWrite(e,",",keys(),",",

&x,",",&y,",",&interval)
 write(f,e,",",keys(),",",

&x,",",&y,",",&interval)
 if e===("q"|"Q") then break
 }
 close(f)
 WClose()
end
procedure keys()
return((&shift & "1")| "0") ||

((&meta & "1")| "0") ||
((&control & "1")| "0")

end

Figure 51 Show events.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 179

the center of the previous circle is unmarked.

The keywords and functions used by the event system are shown in Table 70.

link graphics
procedure main()
 local radius,x,y,px,py
 px:=py:=-10
 WOpen("size=400,300","drawop=reverse") |

stop("can’t open window")
 repeat { case Event() of {
 "q"|"Q": break
 &lpress: DrawCircle(x:=&x, y:=&y, radius := 0)
 &ldrag: {

DrawCircle(x,y,radius)
 DrawCircle(x, y, radius:=sqrt((&x-x)^2+(&y-y)^2))
 }
 &lrelease: {
 DrawSegment(px-5,py,px+5,py,px,py-5,px,py+5)
 DrawSegment(x-5,y,x+5,y,x,y-5,x,y+5)
 px:=x; py:=y
 }
 }
 }
 DrawSegment(px-5,py,px+5,py,px,py-5,px,py+5)
 WriteImage("circles.bmp")
end

Figure 52 Code to draw circles.

Table 70 Event keywords and functions.

Active() returns a window that has one or more
events pending. It will wait until such a
window is available. It will poll the open
windows in a different order each time to
avoid starvation. It fails if there are no
open windows.

&col The text column of the event reported by
the most recent call of Event.

&control succeeds returning &null if the CON-
TROL key was pressed during the event
reported by the most recent call of Event,
otherwise fails.

Icon Programming Handbook

180 Copyright © 1996. Thomas W. Christopher

Enqueue(W,e,x,y,cms,i) adds an event to the end of the list of
pending events in window W. The event
code is e. The position is (x,y). The string
cms indicates the state of the control,
meta, and shift keys: if the character "c"
is in the string, the event reports the
CONTROL key was pressed, and simi-
larly "m" and "s" for META (ALT) and
SHIFT. Parameter i gives the time in
milliseconds for &interval. By default, e
is &null, x is 0, y is 0, cms is "", and i is 0.

Event(W) waits for an event in window W (if nec-
essary), removes the first event from
W’s event queue, sets &control, &shift,
&meta, &interval, &row, &col, &x, and
&y, and returns the event code.

&interval the interval, in milliseconds, between the
event reported by the most recent call of
Event and the event preceding it. This is
not meaningful on all systems.

&ldrag the integer event code returned when the
mouse is moved while the left mouse
button is pressed.

&lpress the integer event code returned when the
left mouse button is pressed.

&lrelease the integer event code returned when the
left mouse button is released.

&mdrag the integer event code returned when the
mouse is moved while the middle mouse
button is pressed.

&meta succeeds returning &null if the META
(ALT) key was pressed during the event
reported by the most recent call of Event,
otherwise fails.

&mpress the integer event code returned when the
middle mouse button is pressed.

&mrelease the integer event code returned when the
middle mouse button is released.

Pending(W) returns the list of events pending in win-
dow W. The list is empty is no events are
pending.

Table 70 Event keywords and functions.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 181

17.9 Canvases and graphics contexts

There are two components of a window:

• the canvas, upon which the figures are drawn, and

• the graphics context, that specifies the font, line width, and other attributes
that control the appearance of what is drawn in the window.

Some window attributes are canvas attributes, others are graphics context at-
tributes.

The appearance of the window on the screen is controlled by canvas attributes.
The attribute, canvas, controls window visibility. It’s options are shown
inTable 71.

&rdrag the integer event code returned when the
mouse is moved while the right mouse
button is pressed.

&resize the integer event code returned when the
window is resized.

&row The text row of the event reported by the
most recent call of Event.

&rpress the integer event code returned when the
right mouse button is pressed.

&rrelease the integer event code returned when the
right mouse button is released.

&shift succeeds returning &null if the SHIFT
key was pressed during the event report-
ed by the most recent call of Event, oth-
erwise fails.

&x The x coordinate of the event reported by
the most recent call of Event.

&y The y coordinate of the event reported by
the most recent call of Event.

Table 70 Event keywords and functions.

Table 71 The canvas attribute.

"canvas=normal" the window is visible and may be resized and
moved about on the screen.

"canvas=hidden" the window is invisible.

"canvas=iconic" the window is represented by an icon.

Icon Programming Handbook

182 Copyright © 1996. Thomas W. Christopher

If the window is normal, its position on the screen is determined by its pos
(or posx and posy) attributes, its size by its size (or height and width
or lines and columns) attributes. The window’s label is the value of its la-
bel attribute. The window’s initial contents can be specified on window cre-
ation by its image attribute. The window can be moved in front of overlapping
windows by the function Raise(), or moved behind them with the function
Lower().

If the window is iconic, attribute iconpos specifies its position on the
screen, iconlabel specifies the caption on its icon, and iconimage speci-
fies the icon’s graphics image.

There are a set of canvas attributes that identify the display screen the window
appears on. Attribute display identifies the display device, display-
height gives its height in pixels, displaywidth gives its width, and
depth gives the number of bits per pixel.

More than one window can share the same canvas. Function Clone(W) creates
a new window with the same canvas as W but a different graphics context. Sim-
ilarly, more than one window can share the same graphics attributes. Function
Couple(W1,W2) creates a window combining W1’s canvas and W2’s graph-
ics context.

"canvas=maximal" the window occupies the entire screen.

Table 72. Canvas manipulation functions.

Clone(
 W,s1,...,sn)

creates a new window with the same canvas as W but
a different graphics context. The new graphics con-
text is initialized from W’s and then is modified by
the attribute assignments s1, ... ,sn.

Couple(W1,W2) creates a window combining W1’s canvas and W2’s
graphics context.

Lower(W) moves the window, W, behind overlapping win-
dows.

Raise(W) moves the window, W, in front of overlapping win-
dows.

Uncouple(W) frees the window W. When the last binding to the
same canvas is removed, the window is closed.

WClose(W) closes window W: its canvas disappears from the
screen. It still, however, exists and can be referenced
via other bindings. Closing &window sets &win-
dow to &null.

Table 71 The canvas attribute.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 183

17.10 Synchronizing window output

On some systems, the functions queue window output for display and return,
rather than waiting for the output to be complete. This speeds up output, but can
cause problems. The user’s mouse commands may be responding to an earlier
window contents. There are three functions to force the buffer to be written.
They are shown in Table 73.

17.11 Dialogs

There are several functions that perform standard dialogues with users. Four of
them are shown in Table 74.

Table 73 Functions to flush the output buffer.

WDelay(W,i) performs the rest of the output queued for window W, and
then delays i milliseconds.

WFlush(W) performs the rest of the window commands that have been
queued for window W.

WSync(W) waits until the rest of the window commands have been
performed that have been queued for window W. WSync
is aimed at client-server graphics.

Table 74 Functions for standard dialogs.

Dialog(
 W,L1,
 L2,L3,L4,
 L5,i)

displays a dialog box. List L1 specifies
the caption for the box, strings to be dis-
played one per line. List L5 specifies
one or more buttons: each string in L5
specifies the caption on a button. Integer
i is the index of the default button, or
zero if there is no default.

Lists L2, L3, and L4 specify zero or
more text entry fields: L2[j] gives the
caption; L3[j], the default values; and
L4[j], the maximum widths.

Global variable dialog_value is as-
signed a list of the resulting text fields.
The function returns the name of the
button pressed to terminate the dialog.

Notice(
 W,s1,s2,...,sn)

displays a dialog box with an "Okay"
button. Each string si is displayed on a
different line. Notice returns the
string "Okay" when the user presses the
button.

Icon Programming Handbook

184 Copyright © 1996. Thomas W. Christopher

Example. Here is an example using Notice.

link graphics
link dialog
procedure main()
 WOpen("size=500,500","canvas=normal",

"pos=150,30") | stop("can’t open window")
 Notice("Just give the word",

"and I’ll reformat",
"your hard drive...")

 Notice("Just kidding")
end

17.12 Table of Attributes

OpenDialog(
 W,s1,s2)

displays a dialog box containing a cap-
tion, and editable text string, and
"Okay" and "Cancel" buttons. It is in-
tended to be used for opening files. Pa-
rameter s1 specifies the caption—
"Open:" by default. Parameter s2
specifies the initial value of the editable
text string—the empty string by default.
The edited text string value is placed in
global variable dialog_value.
OpenDialog returns the name of the
button pressed.

SaveDialog(
 W,s1,s2)

displays a dialog box containing a cap-
tion, and editable text string, and "Yes",
"No", and "Cancel" buttons. It is intend-
ed to be used for saving data in files. Pa-
rameter s1 specifies the caption—
"Save:" by default. Parameter s2
specifies the initial value of the editable
text string—the empty string by default.
The edited text string value is placed in
global variable dialog_value.
SaveDialog returns the name of the
button pressed.

Table 74 Functions for standard dialogs.

"ascent" the number of pixels the current font extends
above the base line. Read only.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 185

"bg=color" selects the background color for the window.
The default is "bg=white". Colors are pre-
sented in Section 17.6 on page 168.

"canvas=normal" the window is visible and may be resized and
moved about on the screen.

"canvas=hidden" the window is invisible.

"canvas=iconic" the window is represented by an icon.

"canvas=maximal" the window occupies the entire screen.

"col=num" column of the text cursor (in characters).

"cursor=s" controls the visibility of the text cursor in the
screen: "on" or "off", "off" by default.

"descent" the number of pixels the current font extends be-
low the base line. Read only.

"drawop=s" string s specifies either "copy" or "reverse".
With "copy" the new pixels replace the existing
pixels. With "reverse", the new pixels will com-
bine with the existing pixels in an exclusive-or
fashion converting foreground-colored pixels
into background-colored and vice versa.

"dx=num" integer to be added to each x parameter passed
to a graphics function to determine the actual
pixel position in the window.

"dy=num" integer to be added to each y parameter passed
to a graphics function to determine the actual
pixel position in the window.

"echo=s" flag controlling whether characters typed to
WRead and WReads are displayed on the
screen: "on" or "off", "on" by default.

"fg=color" selects the foreground color for the window.
The default is "bg=black". Colors are pre-
sented in Section 17.6 on page 168.

"fheight" height of the current text font, top to bottom.
Read only.

Icon Programming Handbook

186 Copyright © 1996. Thomas W. Christopher

"fillstyle=s" string s specifies whether a pattern is to be used
when drawing filled figures, and if so, how. The
options are "solid", "textured", and
"masked". If "solid" is specified, figures
are filled with the foreground color. If "tex-
tured" is specified, both the foreground and
background colors of the pattern are used. If
"masked", only the foreground colors of the
pattern are written; pixels corresponding to the
background colors are left unchanged.

The default is "solid".

"font=s" current text font.

"fwidth" width of the current text font. Read only.

"height=h" height of the window in pixels. Defaults to
enough for 12 lines of text.

"leading=num" the number of pixels between successive lines of
text.

"linestyle=s" string describing the style of the lines to be
drawn. The options differ based on the underly-
ing graphics system. For X-windows, the op-
tions are solid, dashed, and striped. The
dashed lines have gaps. The striped lines
are dashed with their gaps filled with the
background color.

In the beta version of Icon for Windows, the op-
tions are dashed, dotted, solid, dash-
dotted, and dashdotdotted. Style
striped is treated as dashed.

The default style is solid.

"linewidth=num" number specifying the width of the lines drawn.

"pattern=s" string s specifies the fill pattern to be used, ei-
ther a pattern name (Figure 44) or a bi-level im-
age (section 17.4.4).

"pos=x,y" equivalent to: "posx=x","posy=y". De-
faults to "pos=0,0", i.e. the window is drawn
at the upper left corner of the screen.

"posx=x" the horizontal position of the left edge of the
window on the screen.

Windows and Graphics

Copyright © 1996. Thomas W. Christopher 187

"posy=y" the vertical position of the top edge of the win-
dow on the screen.

"reverse=s" string s is either "on" or "off". When
changed from "on" to "off" or "off" to
"on", the values of bg and fg are swapped.

"row=num" row of the text cursor (vertical position in char-
acters).

"size=w,h" equivalent to:"width=w","height=h"

"width=w" width of the window in pixels. Defaults to
enough for 80 columns of text.

"x=num" horizontal position of the text cursor (in pixels).

"y=num" vertical position of the text cursor (in pixels).

Icon Programming Handbook

188 Copyright © 1996. Thomas W. Christopher

Functions and keywords

Copyright © 1996. Thomas W. Christopher 189

Chapter 18 Functions and keywords

Table 75 Summary of functions and keywords.

abs(r) absolute value

acos(r) arc cosine in radians, -1 ≤ r ≤ 1.

Active() returns a window that has one or more events pending.
It will wait until such a window is available. It will
poll the open windows in a different order each time to
avoid starvation. It fails if there are no open windows.

addrat(r1,r2) Add rational numbers: r1+r2.

link rational

any(c) any(c,&subject,&pos,0)

any(c,s) returns 2 if s[1] exists and is in character set c; other-
wise it fails

any(c,s,i) returns i+1 if s[i] exists and is in character set c; oth-
erwise it fails

any(c,s,i,j) returns i+1 if i<j and s[i] exists and s[i] is in character
set c; otherwise it fails

args(p) returns the number of parameters required by proce-
dure p.

If p is a user procedure with a variable number of pa-
rameters, args(p) returns the negative of the num-
ber of parameters p was declared with.

If p is a built-in procedure with a variable number of
parameters, args(p) returns -1.

&ascii produces the character set containing all ASCII char-
acters (128 characters).

asin(r) arc sine in radians, -1 ≤ r ≤ 1.

atan(r1,r2) arc tangent of r1/r2 in radians with the sign of r1.

Icon Programming Handbook

190 Copyright © 1996. Thomas W. Christopher

atan(r) arc tangent of r in radians

bal(c1,c2,c3) bal(c1,c2,c3,&subject,&pos,0)

bal(c1,c2,c3,s) generates the positions k in s where

1≤k<*s+1 and s[k] (if it exists) is in cset c1,

the number of characters in s[1:k] in cset c2 equals the
number in c3,

there is no position m, 1≤m≤k, where the number of
characters in s[1:m] in cset c2 is less than the number
in c3.

bal(c1,c2,c3,s,i) generates the positions k in s where

i≤k<*s+1 and s[k] (if it exists) is in cset c1,

the number of characters in s[i:k] in cset c2 equals the
number in c3,

there is no position m, i≤m≤k, where the number of
characters in s[i:m] in cset c2 is less than the number
in c3.

bal(c1,c2,c3,s,i,j) generates the positions k in s where

i≤k<j and s[k] (if it exists) is in cset c1,

the number of characters in s[i:k] in cset c2 equals the
number in c3,

there is no position m, i≤m≤k, where the number of
characters in s[i:m] in cset c2 is less than the number
in c3.

basename(path,
 suffix)

returns the base name of the file indicated by path.
The suffix string is removed from the right. E.g.
 basename("D:\IPL\PROCS\BALQ.ICN",
 ".ICN")
returns "BALQ". Works for UNIX, MSDOS, and
MACs.

link basename

ceil(r) nearest integer to r away from 0.

link real2int

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 191

center(s,i) produces a string of length i containing string s cen-
tered in it with blanks append to both sides to fill out
the field. If *s>i, then it returns the middle i characters
of s.

center(s1,i,s2) produces a string of length i containing string s cen-
tered in it with copies of string s2 append to both sides
to fill out the field. If *s>i, then it returns the middle i
characters of s.

char(i) produces a one character string where the single char-
acter has the internal representation given by integer i,
0(i(255.

chdir(s) changes the current directory to that indicated by
string s. Fails if it cannot change to that directory, per-
haps because it does not exist.

Clip(W,x,y,w,h) Set a clipping rectangle with its upper left corner at po-
sition (x,y), and width w and height h. The default w
and h values are to the end of the window. Subsequent
drawing outside the bounds will have no effect. When
called without the (x,y) parameters, clipping is turned
off and the entire canvas can be written.

Returns the window, W.

&clock returns a string giving the current time of day
"hh:mm:ss", in 24 hour form.

Clone(
 W,s1,...,sn)

creates a new window with the same canvas as W but a
different graphics context. The new graphics context
is initialized from W’s and then is modified by the at-
tribute assignments s1, ... ,sn.

close(f) closes the file bound to file object f.

&col The text column of the event reported by the most re-
cent call of Event.

collect() forces a garbage collection.

collect(i) forces a garbage collection of region i, where i speci-
fies the region

0—no specific region
1—static region
2—string region
3—block region

Table 75 Summary of functions and keywords.

Icon Programming Handbook

192 Copyright © 1996. Thomas W. Christopher

collect(i,j) forces a garbage collection of region i, where i speci-
fies the region as shown for collect(i) above.
Fails if there are not at least j bytes available in the re-
gion after collection.

&collections generates four values:

• the number of garbage collections

• the number caused by attempts to allocate in the
static region

• the number caused by attempts to allocate in the
string region

• the number caused by attempts to allocate in the
block region.

The first value may be larger than the sum of the other
three due to calls to collect().

Color(W,
 n1,s1,n2,s2,...)

sets each mutable color ni to the corresponding color
specified by si.

components(s,sep)

components(s)

returns a list of the components of the path s, where
the components of the path are separated by the char-
acter sep. The separator defaults to "/" which is ap-
propriate for UNIX. E.g.
 components("/a/b/c.d")
returns
 ["/","a","b","c.d"]

link filename

complex(r,i) create complex number with real part r and imaginary
part i.

link complex

compress(s,c) Let x be a character in set c. A substring of s composed
entirely of character x is replaced with a single charac-
ter x.

link strings

&control succeeds returning &null if the CONTROL key was
pressed during the event reported by the most recent
call of Event, otherwise fails.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 193

copy(x) copy(x) creates a new instance of any mutable ob-
ject x (list, table, set, record) that has the same internal
structure as x, but is not equal (~===) to x. Immutable
objects like numbers, strings, csets are left as is.

CopyArea(W1,W2,
 x1,y1,w,h,x2,y2)

copy a rectangular area of width w and height h from
position (x1,y1) in W1 to position (x2,y2) in window
W2. The (x,y) values specify the upper-left corner, of
course. If W2 is omitted, W1 is both the source and
destination window. If W1 and W2 are both omitted,
&window is the source and destination.

cos(r) cosine of r (given in radians)

Couple(W1,W2) creates a window combining W1’s canvas and W2’s
graphics context.

cpxadd(x1,x2) add complex numbers x1 and x2

link complex

cpxdiv(x1,x2) divide complex number x1 by complex number x2

link complex

cpxmul(x1,x2) multiply complex number x1 by complex number x2

link complex

cpxsub(x1,x2) subtract complex number x2 from complex number x1

link complex

cpxstr(x) convert complex number x to string representation

link complex

&cset produces the character set with all characters present
(256 characters).

¤t the currently executing co-expression.

&date returns the current date in the form "yyyy/mm/dd".

&dateline returns the current date and time of day as a string.

decode(x) translates a string produced by encode back into a data
structure isomorphic to the one encoded.

link codeobj

delete(S,x) deletes element x from set S. Returns set S.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

194 Copyright © 1996. Thomas W. Christopher

delete(T,x) removes the key x and its value from table T.

detab(s,i1,i2,...,in) copies string s replacing tab characters with blanks.
The integer parameters give the tab stops. If more tab
stops are needed, the last interval is repeated.

Dialog(W,
 L1,L2,L3,L4,L5,i)

displays a dialog box. List L1 specifies the caption for
the box, strings to be displayed one per line. List L5
specifies one or more buttons: each string in L5 spec-
ifies the caption on a button. Integer i is the index of
the default button, or zero if there is no default.

Lists L2, L3, and L4 specify zero or more text entry
fields: L2[j] gives the caption; L3[j], the default val-
ues; and L4[j], the maximum widths.

Global variable dialog_value is assigned a list of the
resulting text fields. The function returns the name of
the button pressed to terminate the dialog.

&digits ’0123456789’

display(i,f) writes to file f the names of the i most recently called
active procedures, their local variables, and the global
variables. Used for debugging.

display(i) writes to &errout the names of the i most recently
called active procedures, their local variables, and the
global variables. Used for debugging.

display() writes to &errout the names of all the active proce-
dures, their local variables, and the global variables.
Used for debugging.

divrat(r1,r2) Divide rational numbers: r1 / r2.

link rational

dopen(s) opens the file named s using default options (i.e.
open(s,"rt")). If the file is not found in the cur-
rent directory, all the directories whose paths are listed
in environment variable DPATH are tried, left to right
until the file can be successfully opened. The paths in
DPATH are separated from each other with blanks; the
directories within the paths are separated by "/" char-
acters.

link dopen

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 195

dpath(s) returns the path for the file whose base name is s. If the
file is not found in the current directory, all the direc-
tories whose paths are listed in environment variable
DPATH are tried, left to right until the file can be suc-
cessfully opened. The paths in DPATH are separated
from each other with blanks; the directories within the
paths are separated by "/" characters. (Icon on MS-
DOS allows "/" rather than "\" in paths.) Procedure
dpath returns

• s, if the file is found in the current directory.

• path || "/" || s, if the file is found at path
within DPATH.

link dpath or
link dopen

See also: pathfind.

DrawArc(W,x,y,w,h)
DrawArc(W,
 x,y,w,h,theta,phi)

Draws an ellipse in the rectangle of width w and height
h and a corner at position (x,y). If theta and phi are giv-
en, it draws an arc of the ellipse starting at angle theta
and extending for angle phi.

Returns the window, W.

DrawCircle(W,x,y,r)
DrawCircle(W,
 x,y,r,theta,phi)

Draws a circle with center at position (x,y) and radius
r. If theta and phi are given, it draws an arc of a circle
starting at angle theta and extending for angle phi.

Returns the window, W.

DrawCurve(W,
 x1,y1,x2,y2,
 ...,xn,yn)

Draws a smoothed curve from (x1,y1) to (xn,yn) pass-
ing through the intermediate points in order. If xn=x1
and yn=y1, then the curve will be closed and smoothed
through point (x1,y1) as well.

Returns the window, W.

DrawImage(W,x,y,s) will fill the rectangular area in window W with an upper
left corner at position (x,y) with the image specified by
string s. String s has one of three forms:

"width,#hexdata"
"width,~hexdata"
"width,palette,chars"

In all cases, the width width specifies the width of the
rectangular area to fill. The height is determined by the
number of characters or bits to write.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

196 Copyright © 1996. Thomas W. Christopher

DrawImage(W,x,y,
 "width,#hexdata")

the hexdata is a bi-level image.It is written as tex-
tured: the 1 bits are written as the foreground color
and the 0 bits are written as the background color.

DrawImage(W,x,y,
 "width,~hexdata")

the hexdata is a bi-level image. It is written as
masked: the 1’s are written as foreground color but
the 0’s are not written, leaving those pixels unmodi-
fied.

DrawImage(W,x,y,
 "width,palette,chars")

the colors specified associated with the characters
chars in palette palette are used to fill in the pixels
from left to right, top to bottom. Character \377 and
character ~ (if it is not contained in the palette) specify
transparent pixels which will not overwrite the previ-
ous value. Commas and spaces, if the palette does not
contain them, can be inserted to ease readability; they
will not display.

DrawLine(W,
 x1,y1,x2,y2,
 ...,xn,yn)

Draws a connected sequence of straight lines. A
straight line is drawn from point (x1,y1) to (x2,y2),
then a line from (x2,y2) to (x3,y3), and so on to
(xn,yn).

Returns the window, W.

DrawPoint(W,
 x1,y1,x2,y2,...,xn,yn)

Draws a point at each position (x,y) given.

Returns the window, W.

DrawPolygon(W,
 x1,y1,x2,y2,...,xn,yn)

Equivalent to DrawLine with a final line segment back
to (x1,y1).

Returns the window, W.

DrawRectangle(W,
 x1,y1,x2,y2)

Draws the rectangle with opposite corners (x,y) and
(x+w,y+h). Parameters w and h default to the edge of
the window.

Returns the window, W.

DrawSegment(W,
 x1,y1,x2,y2,...,xn,yn)

Similar to DrawLine, except it draws disconnected
line segments between pairs of points: (x1,y1) to
(x2,y2), then (x3,y3) to (x4,y4), etc.

Returns the window, W.

DrawString(W,x,y,s) writes the string s starting at position (x,y) in window
W without modifying the text cursor.

dtor(r) degrees to radians

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 197

&e The base of the natural logarithms. Approximately
2.71828182845904

encode(x) translates the data structure accessible from x into a
string and returns that string. Any contained files,
functions, procedures, co-expressions, and windows
cannot be properly contained in a string, so don’t try to
include them.

link codeobj

Enqueue(W,
 e,x,y,cms,i)

adds an event to the end of the list of pending events
in window W. The event code is e. The position is
(x,y). The string cms indicates the state of the control,
meta, and shift keys: if the character "c" is in the
string, the event reports the CONTROL key was
pressed, and similarly "m" and "s" for META (ALT)
and SHIFT. Parameter i gives the time in milliseconds
for &interval. By default, e is &null, x is 0, y is 0, cms
is "", and i is 0.

entab(s,i1,i2,...,in) copies string s inserting tabs where possible. The inte-
ger parameters give the tab stops.

EraseArea(W,x,y,w,h) Fills the rectangle with opposite corners (x,y) and
(x+w,y+h) with the background color. Parameters w
and h default to the edge of the window.

Returns the window, W.

&error controls whether errors cause the program to termi-
nate. When zero, an error causes program termination
with an error message. If nonzero, an error causes a
failure and &error is decremented. The error mes-
sage that would have been reported is instead assigned
to keywords &errornumber, &errortext, and
&errorvalue.

errorclear() clears the indication that an error has occurred. Refer-
ences to the keywords &errornumber, &error-
text, and &errorvalue fail until the next error
has occurred.

&errornumber the number of an error.

&errortext the text explaining the error.

&errorvalue the offending value (e.g., whose type didn't match).
Access to &errorvalue will fail if there is no of-
fending value associated with the error.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

198 Copyright © 1996. Thomas W. Christopher

&errout the standard error output file. (It is not a variable; it
cannot be reassigned.)

Event(W) waits for an event in window W (if necessary), re-
moves the first event from W’s event queue, sets
&control, &shift, &meta, &interval, &row, &col, &x,
and &y, and returns the event code.

exists(name) succeeds if file named name can be opened, otherwise
fails.

link exists

exp(r) er, or in Icon, &e^(r)

&features generates strings indicating the features of this version
of Icon.

&file the filename of the file this code was compiled from.

FillArc(W,x,y,w,h) fills an ellipse within the rectangular area which has
one corner at position (x,y) and width w and height h.

FillArc(W,
 x,y,w,h,theta,phi)

fills a wedge of an ellipse within the rectangular area
which has one corner at position (x,y) and width w and
height h. The wedge subtends the arc that would be
drawn by DrawArc(W,x,y,w,h,theta, phi).

FillCircle(W,x,y,r) fills a circle with center (x,y) and radius r.

FillCircle(W,
 x,y,r,theta,phi)

fills a wedge of a circle with center (x,y) and radius r.
The wedge starts at angle theta and extends for angle
phi.

FillPolygon(W,
 x1,y1,x2,y2,...,xn,yn)

fills the contained areas in the polygon that would be
drawn by DrawPolygon(W,x1,y1, x2,y2,
...,xn,yn)

FillRectangle(W,
 x,y,w,h)

fills the rectangle with a corner at (x,y) and width w
and height h.

find(s1) find(s1,&subject,&pos,0)

find(s1,s2) generates the positions k in s2 from 1 to *s2-*s1 which
contain the beginning of the occurrences of s1, i.e.,
where s2[k+:*s1]==s1. Fails if no occurrences of s1
are found.

find(s1,s2,i) generates the positions k in s2 from i to *s2-*s1 which
contain the beginning of the occurrences of s1, i.e.,
where s2[k+:*s1]==s1. Fails if no occurrences of s1
are found.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 199

find(s1,s2,i,j) generates the positions k in s2 from i to j-*s1 at which
s1 occurs as a substring, i.e., where s2[k+:*s1]==s1.
Fails if no occurrences of s1 are found.

findre(re,s,i,j) where re is a string containing the regular expression,
and s, i, and j are as usual. To use it, see 6.13.1 on page
79.

link findre.

floor(r) nearest integer to r toward 0.

link real2int

flush(f) Output is typically buffered before being written.
flush(f)flushes (actually writes out) the buffers
for file f.

Font(W,s) sets the font in window W to that specified by string s,
or fails if it cannot be done.

FreeColor(n1,...) frees the color map entries for all ni. Not available in
all implementations. Bad things may happen if any
pixels are still assigned the color being freed.

function() generates the names of Icon’s built-in functions.

gauss() returns a random number chosen from a gaussian dis-
tribution with a mean of zero

link gauss

gauss_random(x,f) returns a random number chosen from a gaussian dis-
tribution with a mean of x. Larger values of parameter
f will flatten the distribution.

link gauss

gdl(dir) returns a list of all the file names in the directory indi-
cated by the string dir. Fails if there are no files in the
directory. Works with UNIX and MSDOS. Includes
the directory in the file names.

link gdl2

gdlrec(dir) (recursive gdl) returns a list of all the file names in the
directory indicated by the string dir and all its sub di-
rectories. Fails if there are no files in the directory.
Works with UNIX and MSDOS. Includes the directo-
ry in the file names.

link gdl2

Table 75 Summary of functions and keywords.

Icon Programming Handbook

200 Copyright © 1996. Thomas W. Christopher

get(L) removes and returns the first element of list L

getch() reads a character from the keyboard, but does not echo
it. Waits until a character is available.

getche() reads a character from the keyboard and echoes it.
Waits until a character is available.

getenv(s) Systems typically provide environment variables: a ta-
ble mapping string names into string values.
getenv(s) returns the string associated with envi-
ronment variable s, or fails if there is none such.

getpaths(p1,
 p2,...,pn)

generates p1, p2, ..., pn followed by all the paths in
the PATH environment variable. This will work for
both UNIX and MSDOS, choosing the correct PATH
syntax for each.

GotoRC(W,r,c) sets the text cursor in window W to row r and column
c. GotoRC(W) sets the row and column to 1,1.

GotoXY(W,x,y) sets the text cursor position in window W to position
(x,y). GotoXY(W) sets the position to (0,0).

&host the name of the computer system the program is run-
ning on.

iand(i,j) bitwise and: a bit is set in the integer result only if it is
set in both i and j.

icom(i) bitwise complement: a bit is set in the integer result if
and only if it is not set in i.

image(s) produces a legible image of string s contained in dou-
ble quotes. Characters \ and " are represented \\ and \".
Special characters are represented in a form given in
Table 11 on page 61, but if there is no \c representation
available, then the \xhh form is used.

image(cs) produces a legible image of cset cs contained in single
quotes. Characters \ and ’ are represented \\ and \’. Spe-
cial characters are represented in a form given in Table
11 on page 61, but if there is no \c representation avail-
able, then the \xhh form is used.

image(n) produces the string representation of number n.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 201

image(x) produces a legible image of object x. For the mutable
objects, the general format is "type_num(size)",
where type identifies the type of object, num identifies
the particular instance of that type, and size gives the
number of elements it contains.

&input the standard input file. (It is not a variable; it cannot be
reassigned.)

insert(S,x) inserts element x into set S (if it is not already present).
Returns S.

insert(T,x,y) same as T[x]:=y, if T is a table.

integer(x) converts x to an integer, if possible. Fails if not possi-
ble.

&interval the interval, in milliseconds, between the event report-
ed by the most recent call of Event and the event pre-
ceding it. This is not meaningful on all systems.

ior(i,j) bitwise or: a bit is set in the integer result if it is set in
either i or j.

ishift(i,j) shift the bits in i by j positions to the left (if j>0) or |j|
to the right (j<0), filling with zeros.

ixor(i,j) bitwise exclusive or: a bit is set in the integer result
only if it is set in one or the other but not both of i and j.

kbhit() succeeds if a character has been typed at the keyboard
that has not been read in yet. Use this to avoid waiting.

key(T) generates all the keys in the table

&lcase ’abcdefghijklmnopqrstuvwxyz’

&ldrag the integer event code returned when the mouse is
moved while the left mouse button is pressed.

left(s,i) produces a string of length i containing string s left
justified with blanks append to the right to fill out the
field. If *s>i, then it returns s[1:i+1]

left(s1,i,s2) produces a string of length i containing string s left
justified with copies of string s2 append to the right to
fill out the field. If *s>i, then it returns s[1:i+1]

&letters ’ABCDEFGHIJKLMNOPQRSTUVWXYZab-
cdefghijklmnopqrstuvwxyz’

&level is the number of levels of active procedures calls.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

202 Copyright © 1996. Thomas W. Christopher

&line is the number of the line this keyword occurs on.

list() create an empty list

list(n) create a list of n elements all initialized to &null

list(n,val) create a list of n elements all initialized to the value of
val

log(r1,r2) logarithm of r1 to the base r2

log(r) loge r

Lower(W) moves the window, W, behind overlapping windows.

&lpress the integer event code returned when the left mouse
button is pressed.

&lrelease the integer event code returned when the left mouse
button is released.

&main the co-expression that initially began executing the
program.

many(c) many(c,&subject,&pos,0)

many(c,s) returns the position in s following the longest initial
substring in cset c. Returns *s+1 if all the characters
are in c. Fails if the first character of s isn’t in c. (This
saves you from having to write something like: (up-
to(~c,s) | (any(c,s)&*s+1)) \1.)

many(c,s,i) returns the position in s following the longest initial
substring in cset c beginning at position i. Returns
*s+1 if all the characters are in c. Fails if s[i] isn’t in c.

many(c,s,i,j) returns the position in s following the longest initial
substring in cset c beginning at position i and not ex-
tending beyond position j. Returns j if all the charac-
ters are in c. Fails if s[i] is not in c or if s[i:j] would fail
(i.e., the range is not valid).

map(s1,s2,s3) creates a new string which is a copy of s1 except for
replacements made as follows: It replaces each char-
acter s1[i] that occurs in s2 at s2[j] with the character
s3[j]. Strings s2 and s3 must be the same length. If the
same character occurs more than once in s2, the right-
most occurrence determines the replacement charac-
ter.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 203

mapstrs(s,l1,l2) replaces substrings. Lists l1 and l2 contain strings.
Each occurrence of a string of l1 in s is replaced. An
occurrence of the ith string of l1 in s is replaced by the
ith string in l2. If l2 is shorter than l1, the rightmost,
unpaired strings in l1 are deleted. In cases of overlap,
the leftmost match is preferred. If two strings match at
the same location, the longer is preferred.

link mapstrs

match(s1) match(s1,&subject,&pos,0)

match(s1,s2) returns *s1+1 if s2[1+:*s1] == s1; otherwise fails

match(s1,s2,i) returns *s1+i if s2[i+:*s1] == s1; otherwise fails

match(s1,s2,i,j) returns *s1+i if s2[i+:*s1] == s1; otherwise fails. Re-
quires position j to be at least *s to the right of position
i or it will fail.

&mdrag the integer event code returned when the mouse is
moved while the middle mouse button is pressed.

member(S,x) succeeds if x is a member of set S, fails otherwise. Re-
turns x if it succeeds.

member(T,x) succeeds if key x is in table T. Returns x if it succeeds.

&meta succeeds returning &null if the META (ALT) key was
pressed during the event reported by the most recent
call of Event, otherwise fails.

move(i) moves &pos to position &pos+i in &subject and
returns the substring between the original position of
&pos and its new position. The new position can be
zero or negative, but &pos is kept as a positive num-
ber. The assignment to &pos is reversible: when re-
sumed during backtracking, &pos will be set back to
its original position before the move.

&mpress the integer event code returned when the middle
mouse button is pressed.

mpyrat(r1,r2) Multiply rational numbers: r1 * r2.

link rational

&mrelease the integer event code returned when the middle
mouse button is released.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

204 Copyright © 1996. Thomas W. Christopher

name(x) just as image(x) gives a legible indication of a val-
ue, name(x) gives a legible indication of a variable.
If the variable, x, is a keyword or declared variable,
name gives its name as a character string. If it is a com-
ponent of a structure, name(x) gives the structure
type (list, table,...) and the way the component is
usually accessed, e.g., "list[2]", "rec.f".

negrat(r) Negate a rational number: -r.

link rational

NewColor(W,s) allocates a changeable color map entry for a new mu-
table color and assigns it initially the color specified
by s, and returns a small negative integer to represent
the mutable color. Fails if no changeable color map
entry is available.

Notice(W,
 s1,s2,...,sn)

displays a dialog box with an "Okay" button. Each
string si is displayed on a different line. Notice re-
turns the string "Okay" when the user presses the but-
ton.

numeric(x) converts x to an integer or real value, if possible. Fails
if not possible.

open(s1,s2) opens the file named by string s1 for access in the
mode described by string s2 and returns a file object
that represented it, or fails if it cannot be opened. The
modes are indicated by letters:

"a"—open in append mode for writing

"b"—open for both reading and writing

"c"—create

"r"—open for reading (default)

"w"—open for writing

"t"—translate line terminations into line feed char-
acters (default)

open(s1) is equivalent to open(s1,"rt")

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 205

OpenDialog(W,
 s1,s2)

displays a dialog box containing a caption, and edit-
able text string, and "Okay" and "Cancel" buttons. It is
intended to be used for opening files. Parameter s1
specifies the caption—"Open:" by default. Parame-
ter s2 specifies the initial value of the editable text
string—the empty string by default. The edited text
string value is placed in global variable
dialog_value. OpenDialog returns the name of
the button pressed.

ord(s) converts the character in the one-character string s to
its internal integer representation

&output the standard output file. (It is not a variable; it cannot
be reassigned.)

PaletteChars(palette) returns as a character string the characters in the pal-
ette. For a grayscale palette, the characters will repre-
sent the intensities of gray from black to white in
order. For uniform color palettes, cn, the first n3 char-
acters can be indexed by n intensity levels (0, 1, ..., n-
1) for red, green, and blue, to select the character rep-
resenting that combination of intensities,
P[r*n*n+g*n+b+1]. The last n2-2n+1 characters rep-
resent the additional gray levels in order from darkest
to lightest.

PaletteColor(
 palette,s)

returns the color in palette represented by the single
character s.

PaletteGrays(palette) returns a string containing in order from black to white
the characters from the palette representing levels of
gray.

PaletteKey(palette,s) returns a character from the palette which is close to
the color specified by string s.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

206 Copyright © 1996. Thomas W. Christopher

pathfind(s,p) returns the path for the file whose base name is s. If
the file is not found in the current directory, all the di-
rectories whose paths are listed in string p are exam-
ined, left to right. If p is &null (i.e. not specified), the
paths in environment variable DPATH are tried, left to
right until the file can be successfully opened. The
paths in p and DPATH are separated from each other
with blanks; the directories within the paths are sepa-
rated by "/" characters. (Icon on MSDOS allows "/"
rather than "\" in paths.) Procedure dpath returns

• s, if the file is found in the current directory.

• path || "/" || s , if the file is found at
path within p or DPATH.

link pathfind

See also: dpath.

Pattern(W,s) establishes the pattern to be used for Fill... func-
tion calls. The pattern specification s may be one of the
predefined names shown in Figure 44 on page 161, or
it may be a bi-level image as described in Section
17.4.4 on page 161.

pclose(file) closes the pipe bound to file, which was opened by
popen().

link popen

Pending(W) returns the list of events pending in window W. The
list is empty is no events are pending.

&phi phi, the "golden ratio," approx. 1.61803 = a/b where a/
b=(a+b)/a

&pi π, approximately 3.14159265358979

Pixel(W,x,y,w,h) generates the colors of the pixels in the rectangle of
width w and height h with its upper left corner in po-
sition (x,y) of window W. The pixels are generated by
rows, left to right, top to bottom.

pop(L) removes and returns the first element of list L

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 207

popen(s1,s2) equivalent to open(s1,"p"||s2)on systems with
pipes. On systems without pipes, it will use the sys-
tem() function and a temporary file to simulate a
pipe. However, the command given in s1 will not run
concurrently with the current process. (If you use
popen(s1, "w"), you must use pclose(file)
to actually have the command s1 execute.)

link popen

proc(s) returns the procedure named s, where s is a string.

proc(s,i) returns the procedure for the operator whose name is s
which takes i parameters, e.g.,

proc("*",1)(x) *x

proc("*",2)(x,y) x*y

proc("[]",2)(x,y) x[y]

proc("[:]",3)(x,y,z) x[y:z]

proc("...",2)(x,y) x to y

proc("...",3)(x,y,z) x to y by z

prockind(x) fails if x is not a procedural value. Otherwise, it re-
turns
"c", if x is a record constructor,
"f", if x is a built-in function,
"o", if x is an operator, or
"p", if x is a user-defined function.

link prockind

procname(x) returns the name of the procedure value x (which can
also be a record constructor or operator), or fails if x
is not a procedure. If x is an operator, its name has its
number of parameters appended on the right, e.g.

procname(write) yields "write"
procname(proc("...",3)) yields "...3"

link procname

&progname the file name of the executing program. It’s a variable.
You can assign another string to it if you wish.

pull(L) removes and returns the last element of list L

Table 75 Summary of functions and keywords.

Icon Programming Handbook

208 Copyright © 1996. Thomas W. Christopher

push(L,x) inserts x as the new first element of list L, moving the
other elements up one position, e.g., push([1,2,3],4)
creates the same list as [4,1,2,3]

push(L,x1,x2,...,xn) is equivalent to {push(L,x1); push(L,x2);
... ; push(L,xn)}. The end result is xn on top
of the stack.

put(L,x) inserts x as the new last element of list L, leaving the
other elements in their previous positions, e.g.,
put([1,2,3],4) creates the same list as [1,2,3,4]

put(L,x1,x2,...,xn) is equivalent to {put(L,x1); put(L,x2); ...
; put(L,xn)}.

Raise(W) moves the window, W, in front of overlapping win-
dows.

&random The seed of the random sequence. You can assign a
new value to it.

randomize() a procedure to set the seed of the random number gen-
erator to a value determined in part from the date and
time. You can use this to avoid always generating the
same sequence of random numbers each time the pro-
gram is run.

link randomiz

randreal(low,high) returns a random real number, r, in the range
 low ≤ r < high.

link randreal

ranseq(seed) generates the values of &random starting at seed.

link randseq

ranrange(min, max) returns a random integer in the range min to max, in-
clusive.

link ranrange

rat2str(r) Convert the rational number r to its string representa-
tion.

link rational

&rdrag the integer event code returned when the mouse is
moved while the right mouse button is pressed.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 209

read() reads and returns as a string the next line from the stan-
dard input file (&input), but fails on end of file.
read strips off the terminating newline character
from the line it returns.

read(f) reads and returns as a string the next line from the file,
f, but fails on end of file. read strips off the terminat-
ing newline character from the line it returns.

ReadImage(W,s1,x,y)
ReadImage(W,
 s1,x,y,s2)

will read the image in the file named s1 into the win-
dow W with its upper-left corner at position (x,y). If s2
is specified, the colors in the image are converted into
colors in palette s2.

reads() reads and returns as a string the next character from
the standard input file (&input), but fails on end of
file.

reads(f) reads and returns as a string the next character from
the file, f, but fails on end of file.

reads(f,i) reads and returns as a string the next i characters from
the file, f. Fails on end of file. Returns fewer than i
characters if only that many remain.

real(x) converts x to a real number, if possible. Fails if not
possible.

reciprat(r) Get the reciprocal of rational number: 1/r.

link rational

ReFind(re,s,i1,i2) generates the positions in s of occurrences of regular
expression re. The positions generated will be the left-
most positions of the matching strings. Regular ex-
pression re can be a string representation of a regular
expression, or a list representation created by proce-
dure RePat(s). See section 6.13.2 on page 80.

link regexp

®ions generates the current sizes of the three regions: static,
string, and block. The size of the static region may not
mean anything: Icon might allocate more space from
the system when needed.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

210 Copyright © 1996. Thomas W. Christopher

ReMatch(re,s,i1,i2) generates the positions in s following occurrences of
regular expression re beginning at i1. Regular expres-
sion re can be a string representation of a regular ex-
pression, or a list representation created by procedure
RePat(s). See section 6.13.2 on page 80.

link regexp

remove(s) removes the file named s from the disk directory, or
fails if s cannot be removed.

rename(s1,s2) renames the file whose name is s1 to have name s2.
Fails if it cannot rename s1.

RePat(s) translates a string representation of a regular expres-
sion into a list representation. If you are going to use
the same expression repeatedly, it is best to translate it
with RePat once rather than having ReMatch or Re-
Find translate the string representation repeatedly. See
section 6.13.2 on page 80.

link regexp

repl(s,i) produces a string equal to i copies of s concatenated
together

replace(s1,s2,s3) replaces all occurrences of substring s2 in s1 by s3.

link strings

&resize the integer event code returned when the window is re-
sized.

reverse(s) produces the string s reversed

right(s,i) produces a string of length i containing string s right
justified with blanks append to the left to fill out the
field. If *s>i, then it returns s[-i:0]

right(s1,i,s2) produces a string of length i containing string s right
justified with copies of string s2 append to the left to
fill out the field. If *s>i, then it returns s[-i:0]

round(r) nearest integer to r.

link real2int

&rpress the integer event code returned when the right mouse
button is pressed.

&rrelease the integer event code returned when the right mouse
button is released.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 211

rtod(r) convert radians to degrees

runerror(i,x) cause the program to terminate with a standard run
time error message for error number i and offending
object x.

save(s) saves the currently executing program as file s and re-
turns the size of the file created. When executed, the
program will resume executing by returning from the
save. Not available on all systems.

SaveDialog(W,
 s1,s2)

displays a dialog box containing a caption, and edit-
able text string, and "Yes", "No", and "Cancel" but-
tons. It is intended to be used for saving data in files.
Parameter s1 specifies the caption—"Save:" by
default. Parameter s2 specifies the initial value of the
editable text string—the empty string by default. The
edited text string value is placed in global variable
dialog_value. SaveDialog returns the name of the
button pressed.

seek(f,i) seeks to position i in file f so that subsequent reads or
writes will start at the i-th byte. Fails if the seek cannot
be done. As in Icon strings, the first byte in the file is
at position 1, and the last byte is indicated by position
0.

segment(s,c) generates a sequence of strings which are the longest
substrings of s from left to right composed solely of
characters alternatively do or do not occur in c.

link segment

seq() generates the sequence 1,2,3,...

seq(i) generates the sequence i,i+1,i+2,...

seq(i,j) generates the sequence i,i+j,i+2j,...; j must not be 0.

set() creates an empty set.

set(L) creates a set whose initial contents are the elements of
the list L.

&shift succeeds returning &null if the SHIFT key was
pressed during the event reported by the most recent
call of Event, otherwise fails.

sign(r) sign of r: -1 if r is negative, 0 if r is 0, 1 if r is positive.

link real2int

Table 75 Summary of functions and keywords.

Icon Programming Handbook

212 Copyright © 1996. Thomas W. Christopher

sin(r) sine of r (given in radians)

slashbal(
 c1,c2,c3,s,i,j)

like bal, but does not count a character from c2 or c3
that is preceded by a backslash character when deter-
mining balance.

link slashbal

slshupto(c,s,i,j) like upto, but treats backslash as an incorporation
character in s, preventing the position of following
character from being generated. Parameters s, i, and j
default as in the built-in functions, but requires i≤j.
(Warning: slshupto is reputed to have bugs.)

link slshupto

sort(L) creates a new list whose contents are the elements of
list L in sorted order. Elements of the same type are
grouped together. Lists, records, and other mutable
objects are sorted in their group by their order of cre-
ation.

sort(S) creates a list composed of the members of set S in sort-
ed order. Elements of the same type are grouped to-
gether. Lists, records, and other mutable objects are
sorted in their group by their order of creation.

sort(T) (where T is a table) is the same as sort(T,1)

sort(T,i) returns a list containing the keys and values from table
T. If ki is the ith key and vi is its corresponding value,
the resulting list is:

[[k1,v1],[k2,v2],...[kn,vn]] sorted by keys if i=1

[[k1,v1],[k2,v2],...[kn,vn]] sorted by values if i=2

[k1,v1,k2,v2,...kn,vn] sorted by keys if i=3

[k1,v1,k2,v2,...kn,vn] sorted by values if i=4

sortf(L,i) creates a new list whose contents are the elements of
list L in sorted order. Records and lists contained in L
with a size of at least i are sorted by their ith field.

sortf(S,i) creates a new list whose contents are the elements of
set S in sorted order. Records and lists contained in S
with a size of at least i are sorted by their ith field.

&source the co-expression that activated the current co-expres-
sion.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 213

sqrt(r) square root of real r ≥ 0.

stop(x1,x2,...) writes out the values x1,x2,... left-to-right to the
error output, &errout, and exits with an error status.
If any xi is a file, subsequent output is to that file.

&storage generates the amount of space currently in use in the
three regions: static, string, and block. Again, the
space occupied in the static region may not mean any-
thing.

str2rat(s) Convert the string representation of a rational number
(such as "3/2") to a rational number.

link rational

strcpx(s) convert string representation s of a complex number to
it’s internal representation

link complex

string(x) converts a number or a cset to a string.

subrat(r1,r2) Subtract rational numbers: r1 - r2.

link rational

suffix(s,sep)

suffix(s)

returns the list [pre,post] where pre is the sub-
string of s up to the last occurrence of sep and post
is the substring of s to the right of the sep. The sepa-
rator defaults to ".", appropriate for both UNIX and
MSDOS. If the separator sep does not occur, suf-
fix returns [s,&null].

link filename

system(s) executes the string s as a system (shell) command and
returns the exit status (an integer) by calling the C
function system. It is not available on all systems,
but it is available on UNIX©. The command should be
able to direct its output to a file that the program can
then open and read.

tab(i) moves &pos to position i in &subject and returns
the substring between the original position of &pos
and its new position. Position i can be zero or nega-
tive, but &pos is kept as a positive number. The as-
signment to &pos is reversible: when resumed during
backtracking, &pos will be set back to its original po-
sition before the tab.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

214 Copyright © 1996. Thomas W. Christopher

table() returns a new table. Attempting to look up a key not in
the table returns &null. For example, t[[]] will
yield &null because the new list [] can’t be in the
table.

table(x) returns a new table. Attempting to look up a key not in
the table returns the value of x. For example, t[[]]
will yield the value of x because the new list [] can-
not be in the table. The expression x is evaluated when
the table is created, so if you execute t:=ta-
ble([]), all new keys you look up will point to the
same list.

tail(s,sep)

tail(s)

returns the list [pre,post] where pre is the sub-
string of s up to the last occurrence of sep and post
is the substring of s to the right of the separator sep.
The separator defaults to "/" which is appropriate for
UNIX paths. Since Icon allows MSDOS paths to be
specified with "/" rather than "\", it can be used for
DOS if you translate the paths. There are a number of
special cases, tail returns

• ["",s] if sep does not occur in s.

• [sep,s[2:0]] if sep==s[1].

• [s[1:j],s[j+1:0]] if sep occurs at posi-
tion j, 1<j<*s-1.

• [s[1:-1],&null] if sep occurs as the last
character in s.

link filename

tan(r) tangent of r (given in radians)

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 215

tempname() generates names for a temporary file, i.e. a file that
does not appear to already exist. Under UNIX, the file
name has the form
 /tmp/icontmp.ddd
 where ddd is a string of exactly three digits. Under
MS-DOS, the filename is either of the forms:
 temp\icon0ddd.tmp
or
 icon0ddd.tmp
The first form uses the directory bound to the environ-
ment variable TEMP. If TEMP is not defined, then the
second form is used, placing the file in the current di-
rectory.

Because Icon cannot directly test whether a file exists,
tempname returns the names of files it could not
open for reading, which might mean the file exists but
is locked. In that case, you will not be able to open it
for writing either. Therefore tempname is a genera-
tor so that if you can not open the first file generated,
you should be able to open a subsequent one.

link tempname

TextWidth(W,s) returns the number of pixels of width that string s
would require if written in window W.

&time returns the number of milliseconds since the program
started executing.

&trace when not equal to zero, every procedure call, return,
suspension, or resumption writes a message to &er-
rout and decrements &trace.

trim(s) produces a copy of string s with trailing blanks re-
moved

trim(s,cs) produces a copy of string s with all the rightmost char-
acters that are contained in cset cs removed

trunc(r) nearest integer less than r.

link real2int

type(x) produces a string naming the type of object s, one of:

"integer" "real" "string"
"cset" "list"
"table" "set" "procedure"
"co-expression" "window"
or the name of a record type.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

216 Copyright © 1996. Thomas W. Christopher

&ucase ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Uncouple(W) frees the window W. When the last binding to the
same canvas is removed, the window is closed.

upto(c) upto(c,&subject,&pos,0)

upto(c,s) generates the positions in s from 1 to *s which contain
characters in set c. Fails if no such character is found.

upto(c,s,i) generates the positions in s from position i to *s which
contain characters in set c. Fails if no such character is
found.

upto(c,s,i,j) generates the positions in s from position i to position
j which contain characters in set c. Fails if no such
character is found.

variable(s) returns the variable or variable keyword whose name
is contained in string s. It will only return a variable
known at the place of call—you can only access a lo-
cal variable within a procedure.

&version is a string representation of the version of Icon that is
executing.

WAttrib(W,
 s1,s2,...)

sets and queries the attributes of a window. Each string
is either "name" or "name=value" where name is
the name of an attribute and value is a string represen-
tation of a value for that attribute. First WAttrib will
perform assignments for all the "name=value" pa-
rameters, then it will generate the values for all the at-
tributes named, left to right.

Generates the values of the attributes. Fails on an at-
tempt to set an invalid bg, fg, font, or pattern.
Gives a run-time error on any other invalid value or
name.

WClose(W) closes the window W. The window is removed from
the screen. It still, however, exists and can be refer-
enced via other bindings. Closing &window sets
&window to &null.

WDelay(W,i) performs the rest of the output queued for window W,
and then delays i milliseconds.

WDone(W) waits until a Q (or q) is typed in the window, then clos-
es it.

Table 75 Summary of functions and keywords.

Functions and keywords

Copyright © 1996. Thomas W. Christopher 217

WFlush(W) performs the rest of the window commands that have
been queued for window W.

where(f) returns the current file position, most likely for use
with seek later.

WOpen(
 s1,s2,...,sn)

opens a new window with the values of its attributes
given by the strings. Each string is of the same form as
a value assignment in WAttrib: "name=value"
where name is the name of an attribute and value is a
string representation of a value for that attribute. Re-
turns the window. Assigns the window to &window if
&window is previously &null.

WRead(W) reads a line typed into window W in the manner of
read. Displays the text cursor and echoes the charac-
ters typed if window attributes cursor and echo al-
low it.

WReads(W,i) reads i characters typed into window W in the manner
of reads. Displays the text cursor and echoes the
characters typed if window attributes cursor and
echo allow it.

write(x1,x2,...) writes out the values x1,x2,... left-to-right to the
standard output, and follows them with a line termina-
tion. If any xi is a file, the following values are writ-
ten to that file until the file is changed again or the end
of the write procedure. If any xi is neither a file nor a
string and cannot be converted to a string, write ter-
minates program execution with an error.

WriteImage(W,
 s,x,y,w,h)

writes the rectangle of pixels of width w and height h
with its upper left corner in position (x,y) of window
W into the file named s. Normally Icon writes the file
in GIF format, but it may allow other extensions on the
file name to choose other formats.

writes(s1,s2,...) writes out the values x1,x2,... left-to-right to the
standard output. It does not follow them with a line
termination. If any xi is a file, the following values
are written to that file until the file is changed again or
the end of the write procedure. If any xi is neither a file
nor a string and cannot be converted to a string,
writes terminates program execution with an error.

WSync(W) waits until the rest of the window commands have
been performed that have been queued for window W.
WSync is aimed at client-server graphics.

Table 75 Summary of functions and keywords.

Icon Programming Handbook

218 Copyright © 1996. Thomas W. Christopher

WWrite(W,
 s1,s2,...,sn)

writes the strings s1, s2, .., sn in window W in the man-
ner of write—followed by moving the cursor to the
beginning of the next line, scrolling if required.

WWrites(W,
 s1,s2,...,sn)

writes the strings s1, s2, .., sn in window W in the man-
ner of writes—scrolling if required by any \n char-
acters written.

&x The x coordinate of the event reported by the most re-
cent call of Event.

xdecode(f)
xdecode(f,p)

reads, reconstructs, and returns the Icon data structure
from file f that was previously saved there by xen-
code. Files, co-expressions, and windows are decoded
as empty lists (except for files &input, &output,
and &errout). Fails if the file is not in xcode format
or if it contains an undeclared record.

If p is provided, xdecode reads the lines calling
p(f) rather than read(f). See xencode for an
idea of what to use this for.

link xcode

xdecoden(x,fn) like xdecode, except that fn is the name of a file to
be opened for input (with open(fn)).

link xcode

xencode(x,f)
xencode(x,f,p)

encodes and writes the data structure x into file f. The
data structure can be read back in by xdecode. If pa-
rameter p is provided, it is called in place of write,
i.e. p(f,...) instead of write(f,...), in which
case f need not be a file, e.g.
 xencode(x,L:=[],put)
will encode the data structure into a list, L.

link xcode

xencoden(x,fn,opt) like xencode, except that fn is the name of a file to
be opened for output (with open(fn, opt)). The
options, opt, default to "w".

link xcode

&y The y coordinate of the event reported by the most re-
cent call of Event.

Table 75 Summary of functions and keywords.

Syntax

Copyright © 1996. Thomas W. Christopher 219

Chapter 19 Syntax

19.1 Grammar for Icon

In the grammar, all literal characters are quoted. The equal sign defines the
name on its left hand side to match the pattern on its right. The vertical bar sep-
arates alternatives. Parentheses’ group alternatives. Brackets enclose things that
may or may not be present. Braces enclose things that may be present any num-
ber of times or may be absent entirely.

start : program.
program = declaration

| declaration program
.

endOfExpr = ";" | EOL .
declaration = link_declaration

| global_declaration
| record_declaration
| procedure_declaration
.

link_declaration = "link" link_list
.

link_list = file_name
| file_name "," link_list
.

file_name = identifier
| string_literal
.

global_declaration = "global" identifier_list
.

identifier_list = identifier
| identifier_list "," identifier
.

record_declaration =
 "record" identifier "("

field_list_opt
 ")"
.

field_list_opt = field_list
|
.

Icon Programming Handbook

220 Copyright © 1996. Thomas W. Christopher

field_list = field_name
| field_list "," field_name
.

field_name = identifier
.

procedure_declaration =
 proc_header
 locals_opt
 initial_opt
 expression_sequence
 "end"
.

proc_header =
 "procedure" identifier

"(" parameter_list_opt ")" endOfExpr
.

parameter_list_opt = parameter_list
|
.

parameter_list = identifier
| identifier "[" "]"
| identifier "," parameter_list
.

locals_opt = locals
|
.

locals = local_specification identifier_list
| local_specification

identifier_list endOfExpr locals
.

local_specification = "local"
| "static"
.

initial_opt = "initial" expression endOfExpr
|
.

expression_sequence = expression_opt
| expression_sequence endOfExpr expression_opt
.

expression_opt = expression
|
.

expression =
 "break" expression_opt
| "create" expression
| "return" expression_opt
| "suspend" expression_opt

suspend_do_clause_opt
| "fail"

Syntax

Copyright © 1996. Thomas W. Christopher 221

| "next"
| "case" expression "of" "{"

 case_list
 "}"
| "if" expression "then" expression

 else_clause_opt
| "repeat" expression
| "while" expression while_do_clause_opt
| "until" expression until_do_clause_opt
| "every" expression every_do_clause_opt
| expr1
.

suspend_do_clause_opt = "do" expression | .
while_do_clause_opt = "do" expression | .
until_do_clause_opt = "do" expression | .
every_do_clause_opt = "do" expression | .
else_clause_opt = "else" expression | .
case_list = case_clause

| case_list endOfExpr case_clause
.

case_clause = expression ":" expression
| "default" ":" expression
.

expr1= expr1 "&" expr2
| expr2
.

expr2= expr2 "?" expr3
| expr3
.

expr3= expr4 ":=" expr3
| expr4 ":=:" expr3
| expr4 "<-" expr3
| expr4 "<->" expr3
| expr4 op_asgn expr3
| expr4
.

expr4= expr4 "to" expr5
| expr4 "to" expr5 "by" expr5
| expr5
.

expr5= expr5 "|" expr6
| expr6
.

expr6= expr6 "<" expr7
| expr6 "<=" expr7
| expr6 "=" expr7
| expr6 ">=" expr7
| expr6 ">" expr7
| expr6 "~=" expr7

Icon Programming Handbook

222 Copyright © 1996. Thomas W. Christopher

| expr6 "<<" expr7
| expr6 "<<=" expr7
| expr6 "==" expr7
| expr6 ">>=" expr7
| expr6 ">>" expr7
| expr6 "~==" expr7
| expr6 "===" expr7
| expr6 "~===" expr7
| expr7
.

expr7= expr7 "||" expr8
| expr7 "|||" expr8
| expr8
.

expr8= expr8 "+" expr9
| expr8 "-" expr9
| expr8 "++" expr9
| expr8 "--" expr9
| expr9
.

expr9= expr9 "*" expr10
| expr9 "/" expr10
| expr9 "%" expr10
| expr9 "**" expr10
| expr10
.

expr10= expr11 "^" expr10
| expr11
.

expr11= expr11 "\" expr12
| expr11 "@" expr12
| expr11 "!" expr12
| expr12
.

expr12= "not" expr12
| "|" expr12
| "!" expr12
| "*" expr12
| "+" expr12
| "-" expr12
| "." expr12
| "/" expr12
| "\" expr12
| "=" expr12
| "?" expr12
| "~" expr12
| "@" expr12
| "^" expr12
| expr13

Syntax

Copyright © 1996. Thomas W. Christopher 223

.
expr13= "(" expression_list ")"

| "{" expression_sequence "}"
| "[" expression_list "]"
| expr13 "." field_name
| expr13 "(" expression_list ")"
| expr13 "{" expression_list "}"
| expr13 "[" subscript_list "]"
| identifier
| keyword
| literal
.

expression_list = expression_opt
| expression_list "," expression_opt
.

subscript_list = subscript
| subscript_list "," subscript
.

subscript = expression
| expression ":" expression
| expression "+:" expression
| expression "-:" expression
.

keyword = "&" identifier
.

literal = string_literal
| integer_literal
| real_literal
| cset_literal
.

19.2 Table of operators

Icon has many operators and many precedence levels. We include showing the
operators from highest precedence to lowest for you to refer back to when you
need it.. However, it is much safer to use parentheses liberally than to try to re-
member the precedence levels.

prece-
dence

associativity numeric string cset list set co-ex-
pres-
sion

other

12 unary + - ? * ?
! =

~ * * ?
!

@ ̂
*

| not .
/ \

11 binary left @ ! \

10 binary right ^

9 binary left * / % ** **

Icon Programming Handbook

224 Copyright © 1996. Thomas W. Christopher

8 binary left + - ++ -
-

++
--

7 binary left || |||

6 binary left < <=
> >=
= ~=

<<
<<=
>>
>>=
==
~==

=== ~===

5 binary left |

4 left, binary or
ternary

e1 to e2

e1 to e2
 by e3

3 binary right := :=:
<- <->
op:=

2 binary left ?

1 binary left &

Bibliography

Copyright © 1996. Thomas W. Christopher 225

Chapter 20 Bibliography

Foley, James D., Andries van Dam, Steven K. Feiner, John F. Hughes, Comput-
er Graphics: Principles and Practice, Addison-Wesley Publishing Company,
1990.

Griswold, Ralph E. and Madge T. Griswold, The Icon Programming Language,
Third Edition, Peer-to-Peer Communications, 1996.

Griswold, Ralph E. and Madge T. Griswold, The Implementation of the Icon
Programming Language, Princeton University Press, 1986.

Jeffery, Clinton L., Gregg M. Townsend, and Ralph E. Griswold, Graphics Fa-
cilities for the Icon Programming Language: Version 9.0, IPD255, The Icon
Project, University of Arizona, July 19, 1994.

Griswold, Ralph E., Version 9.0 of the Icon Compiler, IPD237, Icon Project,
Department of Computer Science, University of Arizona, May 1994.

Icon Programming Handbook

226 Copyright © 1996. Thomas W. Christopher

