|con Programming Language Handbook

Thomas W. Christopher

|con Programming Language
Handbook

Thomas W. Christopher

Copyright © 1996. Thomas W. Christopheni i

Icon Programming L anguage Handbook

Betaedition.

Copyright © 1996. Thomas W. Christopher

Published by Dr. Thomas W. Christopher, Tools of Computing LLC, P. O. Box 6335, Evanston IL 60204-6335.

Acknowledgment
I wish to thank Patricia Guilbeault for her technical editing of this document.

Todd Proebsting found several errors in the text and suggested improvements.

Printed in the United States of America.

iv Copyright © 1996. Thomas W. Christopher

CONTENTS
Listof Figures. ... Xi
Listof Tables i, Xiii
Preface. XV
Chapter LAboutlcon............ ...t 17
Chapter 2BasiCS. ... 21
2.1 Compiling and running an lcon program 21
22 Helloworld. oo 21
23Declarations 23
2A4EXItiNGAPrOgramottt 24
25Elementary numbers. oo 25
251 Integer literals. 25
2.5.2 Selected integer operators. 25
26 Elementary Strings 25
26.1Stringliterals. 25
2.6.2 Selected string operators. 26
2.6.3 Subscripting Strings.o oo 26
2.6.4 Comparison OPerators.ovvvneie e 28
2.7 Elementary control constructs 28
2.7.11f @XPressionSo v 28
2.7.2While eXpressions.ovviiii i 28
2.7.3 EXPression SEqUENCES oo v v i 29
2.8 Elementary generatorso 29
29Elementary lists. 29
29.1 List creation: list(n). 29
2.9.2 Subscripting lists. 30
293 Listcreation: [...]. ..o 30
294 List creation: list(N,X) . ..o i 30
295 Selected listoperators.t 30
2.9.6 Differences between listsand strings 32
2.9.7 Procedure main'sparameter 33
210RECOMOS. . ..o 33
Chapter 3Generators. ..o, 35
3.1 Expressionsaregeneratorso i 35
3.2 Expression evaluationorder 35

Table of Contents

Copyright © 1996. Thomas W. ChristopheV

Icon Programming L anguage Handbook

SB3EVery. . 36
BATO ot 36
35To-by. ... 37
3.6 Element generation: e 37
3.7Backtracking. 37
B8FRalure. 38
3.9 Binary operators containing generators 38
3.10 Arithmetic relational operators. 38
311Conunction: €1 & €2 ... 39
3.12 Null and non-null tests: / x and\ x 39
313 Coevaluation. ... 40
314 Alternation: el €2 41
3.15 Sequence generation: Seg(...) -« v 42
3.16 Repeated alternation: |e 42
317 Limitation: €1\e2. ... 43
3.18 Idiom: generateandtest 44
Chapter 4 Control Constructs. 45
41{el;€2; ;en} ...t 45
A2eVerydo. . ..o 45
43ifthenese. 46
4.4 idiom: goa directed evaluation 46
45caseof { } ... 47
46whiledo........ .. 48
A7 N0t .. 49
4.8 idiom: write"all do" as"not any don't" 49
49until do 50
A20T1€PAL. . . . o 50
A411break . ..o 51
4121NEXE. .o 51
Chapter 5Procedures. ..., 53
51Procedurecals............ i 53
5.2 Proceduredeclarations 54
5.3 Idiom: default valuesfor parameters 55
SAREIUMN . .. 95
S55Fal ..o 56
56S8uspend. 56
5.71nitial. ... 57
5.8 Stringinvocation. 58
5.9 Applying aproceduretoalist. 58
5.10 Functions that apply to procedures. 59
Chapter 6 Stringsand Character Sets 61
6.1Stringliterals. 61
6.2 PoSItioNSIiNSriNgSo 62

Vi Copyright © 1996. Thomas W. Christopher

6.3SubsCripting 62
6.4 Sectioning: subscriptingranges 63
6.5 ArNgOperators. 64
6.6 String editing and conversion functions. 65
B.71dIOM:map 67
6.8Charactersetsicset. 68
6.8.1 Character setliterals. 68
6.8.2 Character-set valued keywords. 68
6.8.3 Character setoperators.oovvivnvnnn .. 68
6.9 String scanning functions. 69
6.10 AutomatiC CONVErsioNScvvvevneen . 72
6.11 Examplesof strings. 72
6.11.1 Finding the rightmost occurrence. 72
6.11.2 Squeezing whitespace. 72
6.11.3 Converting two hex digitstoacharacter 73
6.11.4 Converting a character to two hex digits 73
6.11.5 Removing backspaces. 73
6.11.6 Generating character settestsforC 74
6.11.7 Generateidentifiers. 74
6.11.8PrimesSSieveot 75
6.12 Scanning Strings.o 75
6.12.1SCaNNING . . . oot e 75
6.12.2 Functionstabandmove 76
6.12.3 String scanning functionsrevisited. 76
6.12.4 Matchingastring, = €.c.coviiinnennn.n. 77
6.12.5 Scanning with assignment, 2=.................. 78
6.12.6 Testing &POS, POS(I) -+« v v v v e 78
6.12.7Example 78
6.13 Regular expressionst 78
6.13.2findre. 79
6.13. 2 rEgEXPN .« o et 80
Chapter 7 Arithmetic........., 83
71 Numericliterals. 83
T20pPEraOrS. . ..o 84
7.3 LargeintegerS. 85
7.4 Conversonfunctions, 86
7.5 Bitwise operationsonintegers 86
7.6 Numericfunctions. 87
TT7COMPIEX . oo 89
78Rationd numbers i 89
79Randomnumbers i 90
TAIOMEIICES ..ot e 91
Chapter 81/0 93
BLFIel/O ... 93
8.2Filenamesandpaths. 98

Table of Contents

Copyright © 1996. Thomas W. ChristopheNii

Icon Programming L anguage Handbook

83DIrectories. 102
8.4 Character-based, interactivel/O................ 102
Chapter OLIStS . ..o 105
9.1 Creation: list(), [.«.] - -« oo 105
9.2 Positions subscripting and subranges. 105
03 0PEraorsS.ot 106
94 Stacksandqueues. 107
9.5 COther listfunctions. 109
Chapter 10Tables., 111
10.1 Cresation, lookup and assignment 111
10.2 Initial value &null,\and /idioms. 111
10.3 Other initial values 112
104 S0t .o e 112
10.5 Generatingkeysandvalues 113
10.6FUNCLiONS. . .. oot 113
10.7 Tableoperators. 114
10.8 Example:wordcount 114
Chapter 11SetS.o 117
11.1Creation.o 117
112 0pEratorsS. . .. oo 117
T13FUNCtiONS. . .. oot 118
114 1diom:to-doSetS.o v 119
115ExamplesusingSetso 119

1151 Crossreferenceo 119

11.5.2 Cross reference without reserved words.. 119

11.5.3 Eight queensproblem 120

1154 PrimessSieveusing Sets ovovviiiin e, 121
Chapter 12Records ..., 123
12.1 Record declarations. 123
122Creation.o i e 123
123Feldaccess rf ... i 123
12.4 Generating fields: ! (unary). 123
12.5 Subscripting records: r["f"] r[i]. 123
12.6 Applying a procedure to the fields: ! (binary) 124
12.7 Record Operators.o v 124
128 Recordfunctions.couou.. 125
Chapter 13 Data Typesand Conversions. 127
13.1 VariablesandValues 127
13.2 OperationsOn Arbitrary Types 128
13.3 Built-inconversons 129
13.4 Trandating structuresto strings 130

viii Copyright © 1996. Thomas W. Christopher

Chapter 14Debuggingcovviiii e 133
141Basicdebuggingo i e 133
142 Monitoringstorageo 138
Chapter 15Writingsystems. 141
15.1 Trandator commands 141
15.1.1 Translator and compiler 141
15.1.2 Translating multiplefiles 142
15.1.3 Command-linearguments. 142
152 Global namespace 144
153 The preprocessor. oo e e 144
15.4 Environment Inquiries 145
Chapter 16 Co-expressions 147
16.1 What are Co-expressions?.c.ouuvunn.. 147
16.2 Cregtion: createe, 147
16.3 Activating aCco-expression 147
16.4 States of aCoO-exXpression.uiin .. 148
16.5 Getting the number of values generated. 148
16.6 Refreshed copies., 148
16.7 Symmetric activation:va @C................ 149
16.8 Co-expression keywords. 149
169p{ .} 149
Chapter 17 Windowsand Graphics. 151
172WiNdows. . ..o 151
17.2GraphiCs . .. oo 153
17.2.1 Co-ordinatesandangles 153
17.3LINES. .o 153
17.3.1 Line-drawing functions. 153
17.3.2 Examplesof linedrawings 156
174Flledaeas 159
17.4.1 Basic area-filling functions. 159
1742Fllstyle ... 160
1743 Palternso 160
1744 Bi-levelimages. 161
1745 Fll attributes. 162
17.4.6 Exampleof filledareas. 162
175 TeXt. oo 164
176 C0l0IS . . oo 168
17.6.1 Color specificationsandnames 168
17.6.2Colorcorrection, 171
17.6.3 Palettes, images. 172
17.6.4 Mutablecolors 176
17.7 Pixel rectangles, moving, saving, restoring 176
178 EVENS . . .o 177
17.9 Canvases and graphicscontexts. 181

Table of Contents

Copyright © 1996. Thomas W. ChristopheliX

Icon Programming L anguage Handbook

17.10 Synchronizing window output
17.11D1al0gS - . v o
1712 Tableof Attributes

Chapter 18 Functions and keywords

Chapter 19 Syntax,
191 Grammarforlcon. ...,
19.2 Tableof operators.,

Chapter 20 Bibliography

X Copyright © 1996. Thomas W. Christopher

List of Figures

List of Figures

Figurel Helloworldprogram. 21
Figure 2 EXpression SeqUENCES. oo o v e vnvn e 22
Figure3Typelessness. 22
Figure4 Local declarations. 23
Figure5 Uninitialized variables. 23
Figure6Write12345, 36
Figure 7 Figure2 Right triangles 44
Figure8 Findarighttriangle...................... 46
Figure9Filecopy..........cco i 48
Figure 10 Define bit positions 49
Figure 11 Write Fibonacci numbersusinguntil 50
Figure 12 Fibonacci usingrepeat 51
Figure 13 Bit positionsinoctal 55
Figure 14 Maximum of twonumbers. 56
Figure 15 Demonstrationof suspend 57
Figure16 Usinginitial 57
Figure17 Findlastoccurrence. 72
Figure 18 Squeezingwhitespace................... 73
Figure 19 Converting two hex digitsto acharacter 73
Figure 20 Converting a character to two hex digits. 73
Figure 21 Removingbackspaces. 73
Figure 22 Generating character set testsforC......... 74
Figure 23 ident: Generating identifiers 75
Figure 24 Primessieveusingstrings. 75
Figure 25identswith?andtab. 78
Figure26 Primesieveusingbits................... 87
Figure 27 Character positions. 106
Figure 28 Stack and queue operationson alist. 108
Figure 29 Word: Generating thewordsin afile 115
Figure 30 Count occurrences of wordsin theinput. . .. 115
Figure 31 Crossreferencelisting. 119
Figure 32 Cross references without reserved words. . . . 119
Figure 33 Theeight queensproblem............... 120
Figure 34 Built-in dataconversions.. 130
Figure 35 Icon translator and compiler. 141
Figure 36 Refreshed copies of co-expressions. 149
Figure 37 Drawinglines. 156

Copyright © 1996. Thomas W. Christopheb(i

Icon Programming L anguage Handbook

Xii

Figure 38 Linesdrawn by Figure37................ 157
Figure 39 Closed figures., 157
Figure40Draw aspiral. 157
Figure 41 Spiral—the effects of angles. 158
Figure 42 Angles in DrawCircle and DrawArc. 158
Figure 43 Some filled figures. 160
Figure 44 Fill patterns. 161
Figure 46 Code for beveled figures. 162
Figure 45 Beveled figures. 163
Figured7 Fonts. 167
Figure 48 Font attributes. 168
Figure 49 Moving sign.. 168
Figure 50 Grammar for colornames. 170
Figure 51 Showevents.. 178
Figure 52 Code todrawcircles. 179

Copyright © 1996. Thomas W. Christopher

List of Tables

List of Tables

Tablellcondatatypes.cooiviiinon.. 18
Table2Declarations., 23
Table 3EXitingaprogramc.couvunn.. 24
Table 4 Arithmeticoperators 25
Table5 Comparisonoperatorsovvvvevennnn. 28
Table6 Testingfor&null 40
Table7Functionseq(). ... oo i 42
Table8Examplesof le..........t 42
Table9 Examplesofel\e2 43
Table 10 Procedures that apply to procedures 59
Table 11 Representation of special characters. 61
Table12 Stringoperators 64
Table 13 String editing and conversion functions 65
Table 14 Keywordswithcsetvalues 68
Table 15 Character setoperators 69
Table 16 String scanning functions 70
Table 17 String scanning, revisited. 77
Table 18 Regular expression special characters. 79
Table 19 Proceduresinregexpr.cn.................. 80
Table 20 Regexp special characters.. 80
Table 21 Arithmeticoperators 84
Table 22 Built-in number conversion. 86
Table 23 Other conversionsfrom real tointeger 86
Table 24 Bitwiseoperators.o vvivivnnen .. 87
Table 25 Trig. and numeric functions and keywords. . . . 88
Table 26 Complex arithmetic procedures. 89
Table 27 Rational arithmetic procedures.............. 90
Table 28 The random number generator, ?n........... 90
Table 29 Random number packagesinthelPL......... 91
Table 30 Operations and functionsonfiles 9
Table 31 File names and paths: IPL procedures. 99
Table 32 Directory and environment procedures. 102
Table 33 Interactive character 1/0 functions 103
Table34Listcreation. ..., 105
Table35Listoperators.o, 106
Table 36 Listsasdoubly ended queues 107
Table 37 Other built-inlist functions 109

Copyright © 1996. Thomas W. Christophelxi ii

Icon Programming L anguage Handbook

Table 38 Functionsthat apply totables 113
Table39 Tableoperators, 114
Tabled0 Setoperatorscovviiiininnnn.n. 117
Table 41 Functionsthat applytosets. 118
Table 42 Operators that apply torecords 124
Table 43 Functionsthat apply torecords 125
Table44 Operationsonvariables 128
Table 45 Operations on arbitrary types. 128
Table 46 Encoding and decoding data structures. 131
Table 47 Debugging functions and keywords 134
Table48Run-timeerors, 135
Table49 Storagemanagement. 138
Table 50 . Command lineflagsforicont............. 143
Table 51 Preprocessor directives.. 144
Table 52 Environment inquiries. 145
Table 53 Co-expression keywords.. 149
Table 54 Common window attributes for WOpen.. 151
Table 55 Functions to open and close windows. 152
Table 56 Basic line-drawing functions. 154
Table 57 Attributesfor linedrawing. 155
Table 58 Functionsfor fillingareas.. 159
Table 59 Fill-related attributes.. 162
Table 60 Text-related window functions. 164
Table 61 Window attributesrelated totext. 165
Table 62 Built-infont families. 167
Table63 Thebuilt-inhues.. 169
Table 64 Lightness and saturation. 170
Table 65 Color palettecl.................oovn... 172
Table66 Colorpalettes......................... 174
Table 67 Palettefunctions. 174
Table 68 Mutable color functions. 176
Table 69 Pixel rectanglefunctions.. 177
Table 70 Event keywords and functions. 179
Table 71 Thecanvasattribute. 181
Table 72. Canvas manipulation functions. 182
Table 73 Functions to flush the output buffer. 183
Table 74 Functions for standard dialogs. 183
Table 75 Summary of functions and keywords.. 189

Xiv Copyright © 1996. Thomas W. Christopher

Preface

Thisdocument is designed to serve two purposes: to introduce to Ilcon and to be
areference for Icon.

Asanintroduction to programming in Icon, the handbook assumes you already

know how to program in some other procedural programming language—C or
Pascal, say. Some of the examples assume you know as much mathematics as
the average college sophomore. Chapter 2 on page 21, presents features of the
Icon programming Language equivalent to those of other programming lan-
guages.

To learn Icon, we suggest you read the Basics chapter and then read through the
text and examples in the rest of the handbook.

Look things up in the tables as you need to, but don’t get bogged down in them.
The tables are there for reference. Just glance over them; don’t bother to read
them thoroughly when you are first learning the language.

As a reference on Icon, this may be the only document you have, so we include
copious tables of operators, functions, and keywords. The tables are placed
within discussions and examples of language features and language usage so
that all the information you need will be close at hand. Since some language fea-
tures fit into more than one topic, the tables have some overlapping material.

Near the end of the handbook we include tables of operators, functions, proce-
dures, and keywords so you can quickly look up the specifics of functions, etc.,
when you remember their names.

On a personal note, the author confesses that he is not a "detail person," so it
seems highly likely there will be some errors and omissions in this book. Please
look me up on the world wide web and send corrections and suggestions.

-TC

www.iit.edu/~tc/
tc@charlie.cns.iit.edu

Copyright © 1996. Thomas W. Christophe XV

Icon Programming Handbook

XVi Copyright © 1996. Thomas W. Christopher

About Icon

Chapter 1 About Icon

Icon is a very-high-level programming language. “Very-high-level” means
roughly that it does a lot for you. It handles a lot of the details that you would
have to handle for yourself if you were programming in a lower level language
such as C; you can do more, quicker and more easily. This makes Icon ideal for:

Quick programming—If you need a program and you need it soon, Icon is a
better choice than a lower level language.

Trying out ideas—If you have an idea for an algorithm, but you're not sure it
will work, it is better to try it out in Icon than invest a lot of time trying to get it
going in some lower level language.

Prototyping— “There’s never enough time to do it right, but always enough
time to do it over” is a cynical saying in the software field. Actually, that's not
such a bad approach. It's only after you've implemented a system and used it
for a while that you know what’'s important and what isn’t, what works, and
what doesn't. It's only then you understand it well enough to design it. Maybe
the right way to do the system is to do it twice, and if that's the case, why not
do the first version in an easy, powerful programming language? The first ver-
sion won’t cost as much if you do it in Icon.

Tools—Programmers often need small programs to do simple tasks. It's a waste
of time to expend much effort on these programs. You can get them out of the
way much more quickly in Icon than in most other languages.

Text processing—Icon’s strings and tables make text processing much more
convenient than in languages that only provide characters and character arrays.

Graphics programming—with version 9 of Icon came libraries of procedures
for programming window and graphical interfaces. Ilcon makes graphical user
interfaces easy.

General purpose programming—Well, why not?

The namelcon, was chosen a long time before graphical user interfaces became
popular. It does not refer to “icons,” but probablydanoclasm, as the devel-
opers were excited about how their language diverged from current practices in
language design.

There are some characteristics of Icon you will need to pay attention to as you
learn it:

Copyright © 1996. Thomas W. Christopherl?

Icon Programming Handbook

Very-high-level datatypes. Icon provides many built-in datatypes that you
would have to program for yourself in other languages. The strings come with
apowerful set of operationsfor text formatting. Even more useful are thetables,
which provide simple, data-base-like facilities. Y ou may need some practice be-
fore you discover their full power.Table 1 lists the built-in data typesin Icon.

Table 1 Icon data types
Icon datatype Explanation

integer and real The usual numeric datatypes. Some versions of Icon pro-
vide integers of unbounded precision.

null Thereisonly one value of thistype, &null. Uninitialized
variables are given this value.
string Unlike most languages where strings are implemented as

arrays of characters, Icon provides strings as a primitive
datatype. They can be of any length. There are extensive
facilities for searching and editing strings.

cset (character set) | Character sets are used by string search functions to find
or skip substrings of characters.

procedure Procedures are valueswhich can be assigned to variables.

list Listscan beindexed like arrays. They can also be used as
stacks and queues. All listsare dynamically allocated and
can grow to any length the computer’s memory can hold.

record Records types can be declared. Each record type has a
fixed number of named fields. They are used like recprds
(or structs) in other languages. All records are dynamical-
ly allocated. In other languages they would be accessed
by pointer, but since they are all accessed that way, there
IS no explicit pointer data type.

table Tables associate values with keys. A value of any type
can be used as a key. A value of any type can be uged as
a value.

set A set is a collection of values of any type. Duplicate val-

ues are not represented, so no matter how many times a
value is inserted into a set, it is present there only once.

co-expression A co-expression is a part of the program running semi-in-
dependently from the other parts. It can be used as a gen-
erator to generate values from a sequence one at a time
when needed, or it can be used as a co-routine, running as
a concurrent process.

file A file is an open file for reading or writing.
window A window on the screen for interactive graphics.

Typelessness. Data values have datatypes. Variables do not. A value of any

18 Copyright © 1996. Thomas W. Christopher

About Icon

type may be assigned to any variable. Y ou will discover thisto be quite useful

when placing values of different typesinto the samelists, tables, and sets. How-

ever, you'll also discover that you will often make the mistake of using the
wrong data type for an operation. Unlike many other languages, the Icon trans-
lator cannot tell you that you've made a mistake. Instead, you will get an error
termination when you run the program.

Expression language. Icon is an expression language: almost all the executable
constructs are expressions and can return values. There is no division between
expression level constructs and statement-level constructs. You can nest control
structures within expressions in a way that doesn’t work in most other languag-
es. You will find this very convenient at times. But you should be careful; it is
easier to write highly complex expressions than to read them.

Goal-directed evaluation. The most difficult aspect of Icon for programmers
familiar with other languages is iggal-directed evaluation, that is to say, its
backtracking control. Most languages use a Boolean data type for controlling
the flow of execution. In most languages, relational operators produce Boolean
values which are tested if{s andwhile’s. Icon is completely different. We'll
spend a lot of time explaining how Icon works in Chapter 3. Briefly, in Icon ex-
pression evaluation can succeed or falil. If the expression succeeds, it produces
a value. If it fails, control backs up to an expression it evaluated earlier to see if
it will generate another value. If that expression does give another value, control
starts forwards again to see if the later expression can succeed now.

Copyright © 1996. Thomas W. Christopherlg

Icon Programming Handbook

20 Copyright © 1996. Thomas W. Christopher

Basics

Chapter 2 Basics

2.1

2.2

Figurel

Compiling and running an Icon program
The author assumes you have version 9 of Icon installed on your system.

Suppose you want to call your Icon program “test”. You put your lcon program
in a file “test.icn” and translate it with the command

I cont test
If it translated without errors, you run it with the command
t est

If there were errors, the Icon translator will tell you where it encountered the er-
ror and what the error seems to be. We will have a fuller discussion later, in
Chapter 14.

Hello, world

It's become customary to start off with a program that writes out “hello, world”
to show that the translator is working. Here it is in Icon:

Hello world program

procedure mai n()
wite("hello, world")
end

There are several things to notice:

You can see the way to write a procedure: it beginspyvitcedur e and ends
with end. Followingpr ocedur e is the name of the procedure and the param-
eter list, which can be empty.

Functionwr i t e writes its arguments into the output and then terminates the
line. The next write will begin on a new line.

Strings are enclosed in double quotes.

When the program begins running, it executes the procedure manadjust
asinC.

Copyright © 1996. Thomas W. Christophte

Icon Programming Handbook

Figure 2

Figure3

In Figure 2 we show that in Icon either a new line or a semicolon—or both if

you prefer—separate expressions in a sequence. lcon executes the expressions
in a sequence in order. The functiani t es writes its arguments into the out-

put but does not terminate the line. What is written next will follow on the same
line.

Expression sequences.

procedure main()
writes("hello,”)
write(” world”)

end

procedure main()
writes("hello,”);
write(” world”)
end

procedure main()
writes("hello,”); write(” world”)
end

Icon is atypeless language. That means that variables are not declared to have
particular datatypes. Only values have datatypes, and avalue of any type may
be assigned to any variable. For that matter, variables do not have to be declared
at al. Figure 3 illustrates this. Note the following:

Variable x isnot declared at all.
The assignment operator is = .

Variable x isassigned two values with different types, first astring and then an
integer.

Procedurewr i t e isaswilling to write out an integer asastring. In fact, it will
write out anything it knows how to convert to astring.

Typelessness

procedure main()
X 1= "Exanple "
writes(x)

x =1

wite(x)

end

Figure 4 showslocal declarations and the exchange operator. The two thingsto
notice are:

Thel ocal introduces declarations of local variables within the procedure.
They are allocated memory when the procedureisentered and they vanishwhen

22 Copyright © 1996. Thomas W. Christopher

Basics

the procedure returns. If thereis no declaration for avariable, likex in Figure
3, thetrandator makesit alocal variable.

Operator : =: isthe exchange operator; it will exchange the values of two vari-

ables.

Figure4 Local declarations

procedure mai n()
| ocal x,y

X =" Exanple "
y 1= 2
wite(x,y)

X 1=y
wite(x,y)

end

When variables are created, they are given theinitial value &nul | which caus-
es most operations to report an error at run time. Y ou will encounter that run-
time error alot.

Figure5 Uninitialized variables

procedure mai n()

| ocal x

wite(x+1l)#this wll cause an error at run tine
(and notice: coments begin with
and run to the end of the line)

end

2.3 Declarations

We have seen local declarations. Icon actually provides al the following kinds
of declarations:

Table 2 Declarations

Declaration | Example Occurs Explanation

local | ocal Xx,y,z inside Cresates new copies of the vari-

procedures | ables whenever the procedure
Is entered. Deletes them when
the procedure returns. The
names are known only within
the procedure.

Local is assumed for unde-
clared variables, but do not use
thisfeature: introducing aglo-
bal declaration |ater can causea
procedure to stop working.

Copyright © 1996. Thomas W. Christophe23

Icon Programming Handbook

Table 2 Declarations

Declaration

Example

Occurs

Explanation

static

static x,y,z

inside
procedures

Creates copies of the variables
when the program starts exe-
cuting. The names are known
only within the procedure.
Thereisonly one copy of astat-
icvariable. It retainsits value
between procedure calls.

global

gl obal x,y,z

outside
procedures

Creates copies of the variables
when the program starts exe-
cuting. The names are known
only within all the procedures
that do not declare the same
names for local or static vari-
ables. Thereisonly one copy of
aglobal variable.

procedure

procedure
nanme(x, vy, z)

end

outside
procedures

See Section Chapter 5, Proce-
dures, on page 53.

record
constructor

record nane(Xx,y, z)

outside
procedures

Seesection2.10 on page33and
Chapter 12 on page 123.

linkage

i nk nane

outside
procedures

Tellsthe linker that this pro-
gram uses procedures, records,
or global variables declared in
thefile named name. The name
may bean Iconidentifier, but it
must be a quoted string if it
contains characters that Icon
does not allow inidentifiers.

2.4

Exiting a program

There are several waysto exit an Icon program. The way you have already seen
Is by returning from the procedure mai n. There are two functions that are also

used, exi t and st op.

Table 3 Exiting a program

exit()

exit the program with anormal exit status (i.e., tell the op-
erating system every thing is okay).

24 Copyright © 1996. Thomas W. Christopher

2.5
251

252

2.6
2.6.1

Basics

Table 3 Exiting a program

exit(i) exit the program and return the value of integer i asthe
exit status. Thisis how to tell the operating system things
are not okay, but you will have to know how your OS in-
terprets these exit status values to use this.

stop(sl,s2,...,sn) | write out the strings s1 s2 ... sn and exit with an error sta-
tus. See afurther discussion in Section Chapter 8, 1/0, on

page 93.

Elementary numbers
Integer literals

Y ou can write an integer literal (constant) as a decimal number, e.g., 25.
Selected integer operators

Like most other languages, you use

Table 4 Arithmetic operators

operator precedence meaning
+ 8 add
- 8 subtract
* 9 multiply
/ 9 divide
% 9 remainder
A 10 (right associative) exponentiation

The operators are executed left to right except for exponentiation which is exe-
cuted rightmost first. Operators*, / , and %are done before + and - . Operator
" isdonebefore any of the others. That isto say, the higher precedence operators
are executed before the lower precedence operators.

Elementary strings

String literals
You writeastring literal (constant) surrounded by quotation marks:
"Li ke this"

If you need to include a quote in a string, put a backslash in front of it, e.g.,

"\ " " If you need to include a backslash, put abackdash in front of it, "\ \ " .
There are special waysto include other characters, but we will not discuss them
until Chapter 6 on page 61.

Copyright © 1996. Thomas W. Christophe25

Icon Programming Handbook

2.6.2

2.6.3

Selected string operators

Y ou can concatenate two strings with the || operator, e.g.,

s: ="ab"
s:=s||"cd"
wite(s)

will writeout " abcd" .

Y ou can find out the length of a string using the unary * operator, e.g.,

s: ="abc"

wite(*s)

s:="a"

wite(*s)

s:=""

wite(*s)
will write out

3

1

0

Subscripting strings

The charactersin astring are numbered from 1 through the length of the string.
Y ou can subscript a string the same way you subscript an array in most other
languages, put the index in brackets following the string:

s:="find"
wite(s[3])
s[4] := "e"
wite(s)

will write out

n
fine

Unlike most other languages, there are no individual character values. Thereare
only character strings of length one. Expression s[3] above returned alength
onestring, " n" .

When you assign to a subscripted string, you can assign more or fewer than one
character. For example,

s: ="fund"
s[4] :=""
wite(s)

s[3] := "nny"
wite(s)

26 Copyright © 1996. Thomas W. Christopher

Basics

will write

fun
f unny

Icon also allows you to subscript a string with a range of positions, selecting
more or fewer than one character. Y ou use the form

s[i : Jj]
(where i <) which selects the substring from character i up to, but not includ-
ing, character . (Theactual rule, aswe will seein section 6.2 on page 62, is that
the string positions are between the letters and at each end, so gi] refersto the

letter to the right of position i, and gi:j] refersto the characters between posi-
tionsi andj.)

If you assign to the substring, you replace the selected characters. If i =j when
you assign, you insert before character i. If i =] =*s+1, you append to s. For
example

s: ="abcd"

wite(s)

s[3:3] :="x"
wite(s)

S[*s+1: *s+1]: ="yz"
wite(s)

writes out

abcd
abxcd
abxcdyz

To recapitulate the rules, where sisastring variableand 1 <1 <j < *st+1:
s[i] selectsthe single character substring, character i, i <*s.
qi:j] (wherei <) selectsthe substring from character i through character j-1. If
I=j, the substring isempty, but it isaparticular substring at a particular position
instring s, which isimportant when you assign to it.
Y ou can assign astring of any length to [i] or gi:j]. The assignment
s[i]:=t
behaves like:
s:=s[1:i] || t || s[i+1:*s+1]
and
sfi:j]:=t

behaves like:
Copyright © 1996. Thomas W. ChristopheQ?

Icon Programming Handbook

2.6.4

2.7

271

2.7.2

s:=s[1:i] || t || s[]:*s+1]
Comparison operators

These are the elementary comparison operators for numbers and strings:

Table 5 Comparison operators

numeric string precedence will succeed when the operands are
comparison comparison
i=j sl==82 6 equd
i ~=| sl ~== 6 not equal
i <j sl<<s2 6 lessthan
i<=] sl <<=s2 6 less than or equal
P> s1>>s2 6 greater than
i >=j sl >>=s2 6 greater than or equal

Elementary control constructs

Here are the three most common control constructs used in Icon. We are omit-
ting most of the details until Chapter 4 on page 45:

If expressions
Y ou can choose what code to execute using the if expression:
I f exprl then expr2 el se expr3

For the moment we will just use asingle comparison operator in expr 1. If exprl
succeeds (in other languages we would say, if exprl istrue, but we do not say
that in Icon), then Icon executes expr2, otherwise, if exprl fails, Icon executes
expr3.

Chapter 3 on page 35 and Chapter 4 on page 45 will discuss the other options
for exprl in much greater detail.

Becausethei f expressionisan expression, it returnsavalue, thevalue of either
expr2 or expr3.

While expressions
Y ou can use the while expression to execute some code repeatedly:
while exprl do exprZ2

Again, for the moment, we will restrict ourselvesto asinglerelational operator
inexprl. Aslong as exprl succeeds, Icon executes expr2. Even though the
whi | e expression is an expression, it does not return a value.

28 Copyright © 1996. Thomas W. Christopher

2.7.3

2.8

2.9
29.1

Basics

Expression sequences

Youcanusebraces, { exprl; expr2;...; exprn },togroup sequences of
expressions to include them in an if expression or awhile expression. The ex-
pressions within the braces are separated by semicolons, or by new lines, or
both, just like the expression sequence in the body of a procedure.

The expression sequence isan expression. It returns the value of the last expres-
sion in the sequence.

Elementary generators

Generators, expressions that deliver asequence of values, are the heart of Icon.
They will be covered in depth in Chapter 3 on page 35. Here we just show one
of the uses.

The loop
every i := 1 to 10 do e

Isthelcon equivalent of afor loop. Theexpression1 t o 10 isagenerator that
generatestheintegersy, 2, ..., 10. Each of the valuesisassigned to variablei and
the expression e is evaluated.

Severa generators can be combined with an & operator to give the effect of
nested loops:

every i :=1to 10 &j :=1to 10 do e

behaves like two nested for loops. For i =1, j will iterate from one to 10, then
fori =2, j will gofrom 1 to 10, and so on.

Y ou can also put in tests to eliminate some of the iterations:
every i :=1to 10 &) :=1to 10 &i ~=j do e
will omit evaluating eif i and j have the same value.

Elementary lists
List creation: list(n)

A listislike an array in other languages. Y ou can create a list whose elements
arenumbered 1, 2, ..., n using the list function,

l'ist(n)
For example,
L:=list(3)

will create alist of length 3 and assignit to L. All the elements of the list will
beinitialized to &nul | , the same as variables are.

Copyright © 1996. Thomas W. Christophe29

Icon Programming Handbook

2.9.2 Subscripting lists

A list of length nisan array of n elementswith the elements numbered from 1
through n, just like arrays. Y ou subscript alist the same way as a string: put the
subscript expression in brackets following the list, e.g.,

L:=list(2)
L[1]:=5
L[2]: =10
wite(L[1])
writes
5
You can create alist of length zero. Just call | i st (0) .
2.9.3 Listcreation: [...]

If you want to create a short list with specific valuesin it, thereis no need to put
the values in with assignment expressions. Y ou can list the values you want in

brackets:
L: =[5, 10]
wite(L[1])
writes
5

Y ou can create alist of length zero by writing [] .
2.94 Listcreation: list(n,x)

If you want to create alist with all elements the same, but not &nul | , use
l'i st(n, x) whichwill create alist of length n al of whose elements are x.

2.9.5 Selected list operators

Y ou can concatenate two listswith the | | | operator, e.g.,

s: =[5, 6]
s:=s|||[7,8]
wite(s[3])

will writeout 7.

Theresult of x| | | y isanew list containing the elements of x followed by the
elementsof y. Listsx and y are not altered.

Y ou can find out the length of alist using the unary * operator, e.g.,

s:=[1, 2, 3]
wite(*s)

30 Copyright © 1996. Thomas W. Christopher

Basics

s: =[]

wite(*s)
will write out

3

0
Y ou can compare two liststo seeif they are the same list or not by using the
=== or ~=== operators. (Use three equal signsin arow.) What does it take to
be the same list? Consider

L:=[1, 2]

M =L
Afterthiscode, L === Mwill succeedandL ~=== Mwill fail. The assignment
M =L makes L and Mpoint to the same list. Now consider

L:=[1, 2]

M=[1, 2]
Afterthiscode, L ~=== Mwill succeedandL === Mwill fail. The assignment

M =[1, 2] makes Mpoint to a new list which cannot be the sasmeasL. Even
though L and Mpoint to lists that have the same length and the same contents,
they are not the same.

Example:

x: =1

y: =1

wite(if x ===y then "equal" else "not equal")
will write

equal
Example:

x: =1

y: :II 1II

wite(if x ===y then "equal" else "not equal")

will write

not equal

Example:

L:=[[1],[1]]
wite(if L[1] === L[2] then "equal"
el se "not equal ")

Copyright © 1996. Thomas W. Christophe81

Icon Programming Handbook

will write
not equal

since the two separate occurrences of [1] create two different lists.

Example:
L:=list(2,[1])
wite(if L[1] === L[2] then "equal"
el se "not equal ")
will write
equal

sincethe occurrence of [1] inthelist function isevaluated just once, creating
onelist, which is assigned to both elements of L.

2.9.6 Differences between lists and strings
Here are some differences between lists and strings:
There are string literals. There are no list literals.

Lists are mutable values; strings are immutable. This meansyou can change an
element of alist and see that changein al the lists equal (===) toiit. If you
change a character in a string variable, Icon actually creates anew string with
the change made and assigns that new string back to the variable.

A subscripted string is astring of length one. A subscripted list isnot usually a
list of length one: it's whatever value of whatever type was in that element.

When you assign avalue to an element of alist, the length of the list does not
change. When you assign a string to asubscripted string, the length of the string
can change. The string you assign is spliced in replacing the character at that po-
sition.

Y ou can assign any kind of value to any element of alist. Y ou can only assign
strings to subscripted string variables.

Procedurewr i t e will write out a string. It will not write out alist.

You can assign alist to an element of another list. You can assign alist to an
element of itself, getting acircular structure.

Y ou can only assign to asubscripted string variable. Y ou cannot assign to a sub-
scripted string constant, e.g.,

s: ="abcd"
s[2] . ="x"

but not

32 Copyright © 1996. Thomas W. Christopher

2.9.7

2.10

Basics

"abcd"[2] . ="x"

Y ou can aways assign to a subscripted list, e.g.,
[1,2,3][2]:=5

Procedure main’s parameter

Procedure main takes one parameter, alist of all the command line arguments
as strings. As you have seen above, you do not actually have to declare proce-
dure main with a parameter. Here's an example of using the parameter, a pro-
gram to echo the command line arguments:

procedure main(args)

=1
while i <= *args do {
wites(args[i]," ")
=i +1
wite() #term nate |ine
end
Records

Y ou can create new record datatypesin lcon, just asyou canin Pascal (records),
C (structs), and C++ (classes). A record typeis declared:

record rname(f1,f2,...,fn)
where
* rname is the name being given to the record type.
» f1,f2, ..., fn are the names being given to the fields (members) of the record.
» the record declaration is only permitteatside of procedure declarations.
For example
record Point(Xx,y)
might be used to define a point in a two-dimensional coordinate system.
A point may be created by the expression:
r := Point(1, 2)

which will create a new record of typeint, initialize itsx field to 1 and ity
field to 2, and assign the point record to variable

The fields of the record can be accessed using the binary ".", field referencing,
operator, e.g.

r.x :=r.y

Copyright © 1996. Thomas W. Christophe83

Icon Programming Handbook

Unlike Pascal, C, and C++, there are no pointers and no distinction between ac-
cessing thefield of arecord variable (e.g.r . f 1 in C) and accessing thefield of
arecord viaapointer (r - >f 1). Internally, Icon accesses all records through

pointers.
pl := Point(1,2)
p2 := pl #p2 points to pl
p2.x := 2 #al so changes pl.x
wite(if pl === p2 then "equal" el se "not equal ")
wite(if pl.x === p2.x then "equal"
el se "not equal ")
will write
equal
equal

34 Copyright © 1996. Thomas W. Christopher

Generators

Chapter 3 Generators

3.1

3.2

Expressions are generators

The greatest difference between Icon and other programming languagesisthis:
in Icon, expressions are generators. Expressions generate sequences of values.

To be sure, constants and variables generate only single values, but there are
language constructs that generate more than one value, and there are some that
may generate none.

Expressions generate their values by backtracking. To understand how this
works, you will need to understand the order in which expressions are eval uat-
ed.

Expression evaluation order
Generally, expressions are evauated |eft to right and bottom up.
» Control goes left to right through an expression evaluating it.

* As soon as the subexpressions are evaluated, the expression that contains
them is evaluated.

Consider the expression:
(a-b)+(c-d)*(e-f)

The expression will be evaluated in the order:

1. t;:=a-b The {s are temporary variables.

2. t:=c-d

3. t3:=e-f

4. =o't now the operands of the multiply are available
5. 5=ty +ty now the operands of the add are available

The difference between Icon and more common programming languages is that
in Icon, after moving forward through the expression, control can

» back up through the list of operations to find an operation that can generate

Copyright © 1996. Thomas W. Christophe85

Icon Programming Handbook

3.3

3.4

Figure 6

more values,
* generate another value from it, and then

* move forward again evaluating the subsequent operations again with the
new value.

Every

One context in which more than one value is required isube y expression.
The expression

every el
creates a context in which el generates all its values.
To

Some operators can generate a series of values. Consider the dpefdter
expression

1to5
can generate the series values 1, 2, 3, 4, 5.

Whether it will be allowed to generate all those values depends on the context
in which it occurs. Some contexts allow at most one value to be generated. In
the sequence of expressions in the body of a procedure, for example, each ex-
pression is allowed to generate at most one value. So the following code will
write out the single value, 10.

procedure main()
wite(1l0 to 20)
end

However, the following code will write out the line

12345
Write12345

procedure main()

every wites(" ",1 to 5)
wite()

end

Theel t o e2 generator steps dyfromel throughe2 which must be great-
er than or equal to el to generate any values.

Theto operator associates to the lefg.,
every wites(" ",1to 2 to 3)

writes out

36 Copyright © 1996. Thomas W. Christopher

3.5

3.6

3.7

Generators

12323

The to operator doesn’t work with large integers, i.e. integers larger than a ma-
chine word.

To-by

There is fuller form of thé o generatorel to e2 by e3, thatwill step by
the value ok3. In this casee3 can be negative, but the must be less than
or equal teel to get any values.

Theto-by operator doesn’'t work with large integers.

Element generation: !e

The! operator generates the components of data objects.
D¢

does the following:

» if xis astring/ x generates the one character substringsioforder from
l,ie,x[1 to *x]

» if xis a string variabldx yields variables which can be assigned to.

» if xis a string valuee.g., a literal, Ix generates string values and cannot be
assigned to.

* if xisalist,/ x generates the elementsxoin order from 1j.e,x[1 to
*X] .

» if x is alist,! x generates variables, e.g. you can use !x :=0 to assign zeros
to each element of a list.

» I appliesto other data types as well, as will be discussed in sections on those
types.

Backtracking

How doesvery work? Consider the sequence of operations for the expression
in theevery line of Figure 6 on page 36:

1. get the variableri t es
get the string "
get the numbet
get the numbés

start up the generattr t o 5 and generate the first valuke,

o g B w N

Whenever it resumes, generate the next value from the generator.

Copyright © 1996. Thomas W. Christophe87

Icon Programming Handbook

3.8

3.9

3.10

7. call the procedure writes passing it the results of steps 2 and 6.

Control goesdown thislist doing each operationin turn. When it getsto theend
of the list, the every forces it to move back through the list looking for a gener-
ator. It finds the generator in step 6 and resumes executing it. The generator
generates another value, 2, so control now starts forwards through the code
again. Eventually, once 5 has been written out, the generator will not be ableto
give another value. So control will continue searching back looking for another
generator. Not finding one, it will fall off thefront of thelist, which tells control
it is done evaluating the expression.

This process of searching back through the sequence of operations |ooking for
agenerator is called backtracking.

Failure

Some control constructs, like the every-expression, cause backtracking into ex-
pressions.

Another way to cause backtracking is expression failure. To anthropomorphize
abit, if an operation fails, control backtracksto seeif it can generate some val-
ues that will make the operation succeed.

Thereisabuilt-in expression that alwaysfails: & fail. Whenever Icon executes
it, it always backs up. The effect of the every-expression in could be achieved

by:
wites(" ",1to 5) + &fail

The &f ai | causes control to keep backtrackingtothel t o 5 generator, gen-
erating a new number and writing it out. What does the + do? Nothing. The
&f ai | prevents control from ever reaching the +. It is never executed.

Binary operators containing generators

Normal binary operators, likethe arithmetic operators, simply computeasingle
output value for a pair of operands. They only generate more values when gen-
erators earlier in the list of operations cause them to be reevaluated.

If both subexpressions have generators in them, then the generator in the right
subexpression runs to completion before the generator in the left subexpression
is alowed to generate another value. Once the left generator has generated a
new value, the right generator isreinitialized and starts anew. For example,

every wites(" ",(1to 2) + (10 to 20 by 10))
writes 11 21 12 22

Arithmetic relational operators

A relational operator is abinary operator that succeedsif the relation holds be-

38 Copyright © 1996. Thomas W. Christopher

Generators

tween its operands and failsif it does not. For example,

a<bhb will succeed if a’'s numeric value is less than b’s and
fail if a’s value is greater than or equal to b’s. (It will
stop the execution of the program if the operands are
not numeric and cannot be converted to numeric.)

Therelational operator yields the value of itsright operand if it succeeds. Since
relational operators are performed left to right, Icon allows such convenient
formsas

a < b < c whichsucceeds ifaislessthan b and bis less than c,
yielding the value of c, and fails otherwise

One common trick in Icon isto write conditional assignment statements. Sup-
pose you want to assign to variable x the maximum of thevaluesof x andy. Y ou
can write:

X:= X <y
This says:

» Ifxislessthany then assign the value of y to x. Since y is the maximum of
x and vy, this is what we want.

» If however x is equal to or greater than y then the relation fails and the over-
all assignment expression stops executing before the assignment is done.
Since x has the maximum value, we do not want to assign it a new value.

3.11 Conjunction: el & e2

There is a special binary operat®yread “and,” that simply returns the value
of its right operand. It has the lowest precedence, even lower than assignment.

The& operator is used for control rather than computation. It allows you to write
a sequence of generators and tests. For example,

every i:=1to 3 &j:=1to3 &i~=j &
wites(" ",i+4)
writes out
343545

3.12 Null and non-null tests: / x and \ x

There are two unary operators that compare their operands to &null and succeed

Copyright © 1996. Thomas W. Christophe89

Icon Programming Handbook

or fail if they are equal.

Table 6 Testing for & null

[X succeeds ik has the value &null and fails otherwise

\ X succeeds ik does not have the value &null and fails otherwise

If these operators are given variables as operands, they |eave them as variables.
Therefore, they can be used for conditional initialization. For example

[/ x =0

will assign x thevalue 0 if x had the value & null. Sincevariablesareinitialized
by the system to &null, this can be used to initialize a variable the first time it
IS encountered.

Another use isto represent Boolean values. Just allow & null to represent false
and anything else to represent true. What you might write in some other lan-
guage as “if (x and y) then...” you would write in Icon as “if \x & \y then...”.

3.13 Coevaluation

A list of expressions separated by commas within a pair of parentheses are eval-
uated as if they were separated®ly. For example

every wites(" ",(1to 3, 1to 2))
behaves the same as

every wites(" ",1to 3 &1 to 2)
This is calledco-evaluation.
Generally

(el, e2, ..., en
IS equivalent to

(e1&e2&... & en

Why are there two ways to do the same thing? This is probably because co-eval-
uation is a degenerate versiorsdection. If you place an integer, k, in front of
the parentheses, i.e.,

k (el1, e2, ..., ek, ..., en)

it will return the value of the kth expression. When used as a generator, for every
combination of values the expressions generate, this form will return the kth.

So,
(e1, e2, ..., en)

40 Copyright © 1996. Thomas W. Christopher

Generators

IS equivalent to
n(el, e2, ..., en
For example,

every wites(" ",(1to 3, 1to 2))

writes

121212
while

every wites(" ",1 (1to 3, 1to 2))
writes

112233

In fact, the general form of selection is
el (el, e2, ..., ek, ..., en

where the value of expression €0 selects the value to return. Naturally, e0 is
evaluated before the other expressions and can be a generator.

every wites(" ",(1to 2) (1to 3, 1to 2))
writes
112233121212

If €0 returns a procedure rather than a number, this syntax does not mean selec-
tion: itisaprocedure call. See Section 5.1, Procedure calls, on page 53.

3.14 Alternation: el | e2

The vertical bar, | , read “or,” looks like a binary operator but does not behave
like one. Expression

el | e2

generates all values generateceliyfollowed by all values generated b%.
1] 2] 3| 4

generates the sequence 1, 2, 3, 4.

So does
(11 2| (3] 4)

The| operator has lower precedence than comparison operators, so you could
write

Copyright © 1996. Thomas W. Christophe|41

Icon Programming Handbook

toseeif i isequal to either j or k. There is, however, a different idiom for that:
=0 | k)
Y ou can use | on the left hand side of an assignment to generate variables, e.g.,
every a| b|] c:=0
although it is neither as clear nor as efficient as
a:=b:=c:=0
3.15 Sequence generation: seq(...)

Thet o andt o- by operators put alimit on the number of values generated. If
you do not want to put alimit, you can use the system function seq to generate
a sequence of values.

Table 7 Function seq()

seq() generates the sequence 1,2,3,...
seq(i) generates the sequence i,i+1,i+2,...
seq(i,]j) |generates the sequence i,i+j,i+2],...;] must not be 0.

The seq operator doesn’t work with large integers.
3.16 Repeated alternation: | e

A generator that is quite difficult to use well is the unary vertical|hdf,you
put| in front of a generatog,

| 9

it will allow g to generate all its values, and then it will reinitializend allow

it to generate all its values again, and again, and again. Qniynihediately
fails on some initialization wil] g fail and allow control to backtrack past it.
Here are some examples:

Table 8 Examples of |e

Expression Generates Explanation

| 3 3, 3, 3, The literal 3 generates a sip-
gle value. The | repeatedly
initializes it to generate an;
other value 3.

(0| 1) |0, 1, 0, 1, 0, 1,...

42 Copyright © 1996. Thomas W. Christopher

3.17

Table 8 Examples of |e

Generators

Expression Generates Explanation

| &fail &f ai | falsimmediately.
Sinceits operand did not
generate any values, the |
also fails.

(i:=0) & 1, 2, 3, similartoseq() , except

| (i +:=1) that it usesthevariablei to

hold the values.

Limitation: el \e2

If youuseseq() or| e, yourisk creating infinite computations. One way to
prevent that is the limit operator:

el \ e2

will alow el to generate at most e2 values. For example,

Table 9 Examples of el\e2

expression generates Explanation

seq()\5 1, 2, 3, 4, 5

(1to 3)\5 1, 2, 3

(1to 9)\5 1, 2, 3, 4, 5

1 to 9\5 1, 2, 3, 4, 5, The\5 limits the number

6, 7, 8, 9 of values generated by

thelitera 9. Thelimit op-
erator has avery high
precedence, just lower
than unary operators.

| 1\'5 1, 1, 1, 1, 1

|(1to 3) \ 5 1, 2, 3, 1, 2

Copyright © 1996. Thomas W. Christophe|43

Icon Programming Handbook

Table 9 Examples of el\e2

expression generates Explanation

(1to3)\(2to4) |1212 312 3| Unlikeall other opera-
tors, the limit operator
evaluates its right oper-
and beforeits|eft. For ev-
ery valuegenerated by its
right operand, it gener-
ates and limits the num-
ber of values generated
by its left.

Astheexample(1 to 3)\ (2 to 4) shows, thelimit operator evaluatesits
operands right before left. Note: This is the only exception to Icon’s left-to-
right evaluation order.

3.18 Idiom: generate and test

Weknow by the Pythagorean Theorem that the sum of the squares of the lengths
of the sides of aright triangleis equal to the square of the length of the hypote-
nuse. Suppose we want to find all lengths of sides of right trianglesthat arein-
tegersinthe range 1 through 100 (including the hypotenuse). We can do it with
the following program:

Figure7 Figure 2 Right triangles

procedure main()
every i:=1to 100 &
j:=i to 100 &
m=j to 100 &
mm=i*i+* &
wite(i,” ",j, " ", m
end

Thisisan example of generate and tesparadigm often used in artificial intel-
ligence and combinatoric search programs. The goal hereis specified by the test
mm = i*i+ *j.Generators preceding the tests will try to find some values
that will pass the tests.

44 Copyright © 1996. Thomas W. Christopher

Control Constructs

Chapter 4 Control Constructs

41 {el;e2; ;en}

Braces are used to surround a sequence of expressions. Every expression except
the last is evaluated in sequence to produce at most one value. Whether it suc-
ceeds or fails, control then goes on and evaluates the next expression in the se-
guence. Thelast expression, en, will then generate as many values as the
surrounding context allows. For example,

every {wites(" ",1to 5 ;wites(" ",6 to 10)}
writes out
16789 10

The semicolon can be replaced with anew linein the sequence, just asin the
expression sequence in the body of a procedure.

4.2 everydo
We have already seen the simple form of an every expression:
every el
which generates all the values for el.
Ancther formis
every el do e2
which says: for each value of el, evaluate €2. Icon does the following:
» It will causeel to generate all the values it can.
» [Eachtimeel generates a value, Icon evalua@s
* Expressiore2 may succeed or fail.
* Icon will generate at most one value & each time it evaluates it.
* The every-do expression fails whef fails.

So the expressioaver y el do e2 behaves very much likevery el &

(e2)\ 1. However, it looks more like loops in conventional languages with the

do, so it's more intuitive. It behaves differently with respect tdtheak and
Copyright © 1996. Thomas W. Christophe|45

Icon Programming Handbook

next expressions, discussed in section 4.11 and section 4.12 on page 51.

Every-expressions are expressions and can be placed inside other expressions.
What values do they generate? Actually, none. Like &f ai | , they fail without
returning a value. However, if they are exited by a break expression, they can
return values. See Section 4.11, break, on page 51.

4.3 if then else

If el then e2 else e3
» The if-expression behaves much like the if-statement in conventional lan-
guages with these differences:

» The expressiorl is evaluated to determine its success or failuel suc-
ceeds, the if expression behaves 8Rgif €l falils, it behaves like3.

* Expressiorel is abounded expression—at most one value is generated
from el. Control is cut off from backing intel after it has generated one
value.

» Eithere2 or e3 may generate as many values as the context requires.

As in other languages, there is a version that omits the else expression.
If el then e2

If the else clause is omitted arel fails, the entiref expression fails.

For example, to sort a pair of numbers in variables x and y so that the smaller is
in X and the larger in y, you can write:

If x>y then x:=y
4.4 idiom : goal directed evaluation

Consider the following program to find the lengths of the sides of some right
triangle for which the sum of the sides is no less than 1000 and no more than
2000 units long:

Figure 8 Find aright triangle

procedure main()

local i,j,mn

if i:=1 to 2000 &
j:=i to 2000 &
n:=i*i+*j &
m =i nteger(sqrt(n)) &

nmm=n &
1000 <= i +j +m <= 2000
t hen
wite(i,” ",j," ", m

end

In other programming languages, you would probably have to write several

46 Copyright © 1996. Thomas W. Christopher

4.5

Control Constructs

nested loops to find such atriangle. (By the way, the one it finds has sides 33,
544, and 545.) Once you've found it, you'd have to jump out of the nest of loops
to go on with the program.

This is an example of goal directed evaluation. The goal is represented by the
teststm = n & 1000 <= i+j +m <= 2000. The computation can be
viewed as trying to generate sides i and j that achieve the goal.

case of { }

The case expression behaves similarly to the case or switch statement in other
programming languages. The general form

case e; of {

€2n ¢ €2n+1
default : esnin

}

IS equivalent to

{(tnp 1= e;)\1 &
i f tnmp===(e,) then ez
else if tnp===(e4) then eg

else if tnmp===(e,,) then esy4q
el se esn4o

}

wheret np is an otherwise unused variable. To express its behavior another
way:

» the expressior, is evaluated to give one value which is assigned to a tem-
porary variable.

» if the expressior, fails, the case expression fails.

* in order, for i from 1 to n, lcon compares the value of expressido the
values generated by expresses, .

» the comparison operator for the equality comparison is the universal equal-
ity test, ===. If it is given two numbers, it performs a numeric test; if two
strings, a string test. For other kinds of objects, it tests to see whether they
are the same object or not.

Copyright © 1996. Thomas W. Christophe|47

Icon Programming Handbook

* as soon as Icon finds a value equal to some value generate@fy ah
evaluate®,,, to yield the values of the case expression.

» if none of the expressiors; generate a value equal to the value obtained
frome, then the default expressi@y,, 4o, is evaluated as the value of the
case expression.

» the default expressioryp .+, IS optional. If it is not present and no other
expression is selected, the case expression fails.

4.6 whiledo
while el do e2

The while expression is like the while statement in other programming languag-
es. It differs from the every expression in that it generates at most one value
from el per iteration. Briefly:

¢ jtevaluate®l
+ if €l succeeds, it evaluate®
* e2may succeed or falil

* it generates at most one value freinand at most one value froe8 each
iteration

» oncee2 has been evaluated, it restarts evaluatioel dfom the beginning
» it fails whenel fails

There is a version without the do clause:

while e

Which repeatedly evaluatedrom the beginning until it fails.

For example, here is a file copy program. It copies its input into its output. If
you are running it from the keyboard, it writes back each line you type to it.

Figure9 Filecopy

procedure main()
while wite(read())
end

Ther ead procedure reads one line of input at a time and will fail when the in-
put is finished.

The file copy cannot use aaery expression. Theead procedure is not a gen-

48 Copyright © 1996. Thomas W. Christopher

Figure 10

4.7

4.8

Control Constructs

erator. It will return one line each time it is entered as control moves forward,
but it cannot be resumed during backtracking; backtracking will back past it.

Hereisasmall utility program to create define macrosin C for bit positions.
Youfeeditalist of identifiersand it will create one#def i ne linefor each
identifier. This makes each one a different power of two. That is, it will make
each one amask for a different bit position.

Define bit positions

procedure main()

=1

while x :=read() do {
wite("#define ", x," ",i)
=0+

}

end

not
not e

The unary operator not ewill succeed if its operand e fails and fail if it suc-
ceeds. If not succeeds, itreturns&nul | (It hasto return something, and its op-
erand did not give it any value to return.)

Since not isaunary operator, it has higher precedence than any binary operator.
Y ou will almost always need to surround its operand with parentheses.

idiom: write "all do" as "not any don’t"

Icon evaluates expressionsto try to find some way to make them succeed. Suc-
cess means there exists at least one way to make it succeed. For example, sup-
pose we want to know if there are two elements of alist, L, that are equal. We
could write:

i:=1to *L-1 &j:=i+1 to *L & L[i]===L[]]

Sometimes you want to know whether something’s true for all rather than
whether it'struefor any. Thereisno way to write that directly inlcon. Y ou have
to resort to a double negative.

Something istrue for all if and only if there are none for which it is not true.

Suppose we wish to find whether al elementsof alist areequal. If all are equal
to each other, they are equal to the first element, so if thereis any element not
equal to thefirst, then they are not all equal. We could write the test as

not (i:=2 to *L & L[1] ~===L[i])

Copyright © 1996. Thomas W. Christophe|49

Icon Programming Handbook

4.9 until do

until el do e2

The until expression behaveslike

while not (el) do e2

Briefly:

it evaluate®l

if el fails, it evaluateg2

€2 may succeed or fail

it generates at most one value fregneach iteration

oncee2 has been evaluated, it restarts evaluatiogil dfom the beginning

it generates at most one value frefrfor it fails as soon asl succeeds

There is a version without the do clause:

until e

Which repeatedly evaluatedrom the beginning until it succeeds.

For example, consider the following program to generate Fibonacci numbers up
to 100,000. Fibonacci numbers come in a sequence defined as follows: the first
two Fibonacci numbers are 1; each subsequent number is the sum of the two
previous Fibonacci numbers.

Figure1l Wkite Fibonacci numbersusing until

procedure mai n()

| ocal i,]j

=1

j:=1

until 1>100000 do {
wite(i)
I +: =
=]

}

end

410 repeat

The repeat expression

repeat e

will repeatedly evaluate the contained expressidnwill never terminate un-
less exited explicitly by, for exampley eak, r et ur n, suspend, orf ai | .

50 Copyright © 1996. Thomas W. Christopher

4.11

Figure 12

4.12

Control Constructs

break

Thebr eak expressionisused to exit from asurrounding loop of any type (ev-
ery,whil e,until,repeat). Therearetwo forms, break alone, or break
with a contained expression:

br eak
break expression

For the ssimple br eak, control exits the immediately surrounding loop. Unlike
falling out of the loop, which fails, exiting with abr eak succeedsyielding the
value of the expression. If the expression is absent, it yieldsa &nul | .

Y ou could write something like

If every {... break ...} then exited_by_break()
el se exited_normal ly()

Theform br eak expression exitstheloop and generates the valuesthe expres-
sion generates. In fact, the expression behaves asif it is outside the loop. If it
containsabr eak or next , they apply to the next surrounding loop.

To exit two levels of loop, use

break break
Fibonacci numbers, again:
Fibonacci using repeat

procedure main()
| ocal 1i,]
=1
j:=1
repeat {
wite(i)
I +: =
=]
I f 1>100000 then break

end

next
next

The expression next causes the loop it’s in to start its next iteration.
If it's within an every expression,

every el do e2

Copyright © 1996. Thomas W. Christophe51

Icon Programming Handbook

it immediately causes backtracking back into the control expression, el.
If it's within a while or until,
while el do e2
or
until el do e2
it enters the control expressi@i, again.
If it's within a repeat,
repeat el

it just starts evaluatingl again.

52 Copyright © 1996. Thomas W. Christopher

Chapter 5

Procedures

Procedures

5.1 Procedure calls

A procedure call has the form:

exprg (exprq, expro, ..., expr,)
Expression exprevaluates to a procedure value.

Most commonly, exgyis a global name that has been assigned the proce-

dure value either by a procedure declaration or by being the name of a built-
in function.

Expression exgrmay be an expression that evaluates to or generates proce-
dures, e.g. K| G (x, y) would callF(x, y) and then, if backtracked into,
call x,y) .

The actual parameter ligxpr , , expr,, ...,expr,, may be empty.

The number of actual parameters provided may be more or less than the
number of parameters specified in the procedure declaration. Extra param-
eters are ignored. Missing parameters are given the &aluiel .

Expressions may be omitted from within the actual parameter list, e.g.

F(, 2, , 4).
The missing parameters are given the v&el | .

The parameters are passed by value. If there is a variable in the parameter
list, its value is passed to the procedure.

However, Icon waits until the moment of call to fetch the current value of a
variable. For example

wite(x:=1," ", x+=1," ", x+:=1)
writes
333

since each assignment returns\aeable on the left hand sidexf and the
write fetches the current value of each of the occurrencesgust before
the call and after the final assignment has been done.

The parameters are evaluated left to right. All must succeed giving a value
before the procedure is called.

Copyright © 1996. Thomas W. Christophe53

Icon Programming Handbook

» The procedure is called for each set of values the parameters generate as
long as control backs into it.

* The procedure itself m&gil, mayreturn a value, or magenerate a se-
guence of values.

» The procedure may return or generate variables that can be assigned to.
5.2 Procedure declarations
The form of a procedure declaration is

procedure nane (fornmal 4, formal, ..., fornal,)
decl arati ons
I nitial _expression_option
expressi on_sequence
end
* The procedure declaration creates a procedure value.

* The name of the procedure becomes a global variable initialized to the pro-
cedure value.

* The procedure value can be assigned to other variables and put in data struc-
tures.

* The listformal{, formal,,..., formal,, is a list of zero or more identifiers sep-
arated by commas. They are the formal parameters of the procedure.

» Each formal parameter is assigned the value of the corresponding actual pa-
rameter. Since mutable objects are accessed by pointer, the pointer is copied
to the formal parameter and both the formal and the actual parameters point
to the same object, which resembles call-by-reference.

» Ifthere are more actual parameters than formal, the remaining actual param-
eters are ignored.

» If there are fewer actual parameters than formal, then the extra formal pa-
rameters are assigned the initial vagumail | .

* You may write a procedure to take a variable number of parameters by fol-
lowing thelast formal parametefprmal,, with a pair of bracket$,] . All

the actual parameters from n on will be placed in a list which will be as-
signed tdormal . (Lists are discussed in Chapter 9 on page 105.)

« The declarations allowed drecal andst ati c. See Section 2.3, Decla-
rations, on page 23.

 Theinitial expression is optional. Itis discussed in section 5.7 on page
57

* Theexpression_sequenceis like the expression sequence between braces,
{...}—the expressions are evaluated in sequence, each to produce a sin-

54 Copyright © 1996. Thomas W. Christopher

Figure 13

5.3

5.4

Procedures

glevalue or to fail. Each expression is bounded: control will not backtrack
Into an expression once it has produced avalue.

» If control finishes executing the expression sequence and comegtulthe
the procedure catéils.

Bit positionsin octal

procedure oct (i)

return if i =0 then "0" else oct(i / 8) || I %8
end

procedure main()

=1

while x:= read() do {

wite("#define ", x, " ", oct(i))

i =i

}

end

Idiom: default values for parameters
You can assign default values to parameters as follows:
| paraneter_nane : = default_val ue

If the caller did not provide an actual parameter, lcon supghes | . The/
tests the value of the parameter and succeeds only if it is &null. The &null is
replaced with the default value.

Return

A procedure returns a value by executing a return expression.
return e

or
return

The return behaves as follows:

* If ther et ur n does not include an expressm@rthe procedure returns
&nul | .

» Ifther et ur n contains an expressiog),the procedure returns the value of
eto the caller.

* Ifther et ur n contains an expressios,and expressioafails, however,
the procedure call fails causing backtracking in the caller.

* Ther et ur n doesnot create a generator. The procedure does not suspend.
It cannot be reentered to generate another value. At most one value is re-
turned.

Copyright © 1996. Thomas W. Christophe55

Icon Programming Handbook

* If eis a variable, but not a variable declaretal orst ati c, the vari-
able is returned from the procedure. That is, you can potentially assign a val-
ue to what a procedure returns. You can use a procedure call on the left hand
side of a =. A local variable cannot be returned because it no longer exists
after the procedure returns.

Consider the following procedure that will return the maximum of two num-
bers:

Figure14 Maximum of two numbers
procedure max2(Xx,y)
X <=y
return x
end

55 Fall
The fail expression
fail

causes the call of this procedure to fail. Tlae | will cause backtracking in
the caller.

5.6 Suspend

You usesuspend to make a procedure into a generator. $aspend be-
haves liker et ur n, except that it leaves the procedure as a generator, ready to
be resumed to try to generate more values. The forms are:

suspend el do e2
suspend el
suspend

* Thesuspend has the following behavior:

* Thesuspend evaluates its contained expresseinand passes each value
el generates back to the caller. It is likeet ur n, but the procedure
doesn’t go away after returning one value.

* When the caller backs into the procedure call, control backs to the proce-
dure, execute= if present, and backs into the expres&bto generate the
next value.

* When expressiogl fails to generate any more values, control falls out of
thesuspend exactly like control falls out of aaver y. If it fails to gen-
erate any values, control moves on without delivering any values to the call-
er for thissuspend.

* Without the included expressief, suspend delivers&nul | back to the
caller.

56 Copyright © 1996. Thomas W. Christopher

Figure 15

5.7

Figure 16

Procedures

* |If elis a variable, but not a variable declareatal , the variable is re-
turned from the procedure. That is to say, you can potentially assign a value
to what a procedure generates. You can use a procedure call on the left hand
side ofa = .

For example,
Demonstration of suspend

procedure)

suspend |wites(" el")\3 do wites(" e2")
wite()

suspend |wites(" e3")\2

wite()

end

procedure main()
every) do wites(" e4")
end

writes out

el e4 e2 el ed4 e2 el e4 e2
e3 e4 e3 e4

Initial

Thest at i ¢ declaration declares variables within a procedure that retain their
values between calls. The problem, of course, arises the first time the procedure
is called: the variable has no value from before. Icon provides a way around this
problem with the initial declaration:

initial e

which comes just after the declarations at the start of the procedure and just be-
fore the expression sequence that is the body of the procedure.

The contained expressierns executed only once, the first time the procedure
Is called.

The initial expression is used to initialize the static variables declared within the
procedure. It is also used to initialize some global variables shared by a collec-
tion of procedures.

Suppose you have two procedur@squeue(x) anddequeue() that are
supposed to put items into and remove them from a shared queue implemented
as a list. They need that list initialized, so they might be written (omitting the
actual code):

Using initial
gl obal queue

Copyright © 1996. Thomas W. Christophe57

Icon Programming Handbook

5.8

5.9

procedur e enqueue(x)

initial /queue:=list()
end

procedur e dequeue()
initial /queue:=list()
end

Each of them checksto seeif the queue has beeninitialized yet and initializesiit
if it has not been. By using thei ni ti al expression, they avoid having to
check each time

String invocation

Y ou can call aprocedure by supplying its namein astring. For example, if you
have declared a proceduref , you can call it

" ()
rather than
f(x)

However, recently Icon has been optimized to save space, so you haveto tell it
to keep around the names of the functionsyou wish to call viatheir names. Y ou
can doitin either of two ways:

1) trandate it with the command
icont -fs ...

wherethe flag -fs says to implement strings fully, including keeping the names
of functions.

2) includei nvocabl e commands for each procedure you may call by its
string name, e.g.,

i nvocable "f"

at the same level in the program as gl obal declarations, i.e., outside proce-
dures. Be sure to enclose the procedure name in quotation marks.

Or to make al proceduresinvocable, use

i nvocabl e all

Applying a procedure to a list

Suppose you want to apply a procedure, P, to argumentsthat are contained in a
list, L. Usetheinfix ! operator:

P! L

58 Copyright © 1996. Thomas W. Christopher

5.10

Procedures

Operator! takesaprocedureonitsleft hand sideand alist onitsright hand side
and calls the procedure passing the arguments contained in the list. For exam-
ple, thefollowing all call procedure P passing it aand b:

P(ab) P! [ab] "P'(ab) "P'l[ab]

Functions that apply to procedures

There are several built-in functionsthat work with procedure objects. The func-
tionar gs reportsthe number of argumentsthat aprocedure requires. The func-
tion pr oc will return the procedure named by a string. This may not seem
useful, given string invocation of procedures, but it will also give procedures
corresponding to operators and allow you to choose between unary and binary
or binary and ternary. In addition, there are two useful proceduresin the Icon
Program Library. Procedure pr ocki nd will tell you what kind of procedure a
procedureobjectis. Procedurepr ocname will return the name of aprocedure.

Table 10 Procedures that apply to procedures

args(p) returnsthe number of parametersrequired by procedure
p.

If pisauser procedure with a variable number of pa-
rameters, ar gs(p) returnsthe negative of the number
of parameters p was declared with.

If pisabuilt-in procedure with avariable number of pa-
rameters, ar gs(p) returns-1.

proc(s) returns the procedure named s, where sisastring.
proc(s,i) returns the procedure for the operator whose nameis s
which takes i parameters, e.g.,
proc("*",1)(x) * X
proc("*", 2) (x,y) x*y
proc("[1",2)(x,y) x[y]
proc("[:]1",3)(x,y,z) x[y:Z]
proc("...",2)(x,Y) X toy
proc("...",3)(X,vY, z) X toy by z

procki nd(x) failsif x isnot a procedural value. Otherwise, it returns
"c", if x isarecord constructor,

"f ", if x isabuilt-in function,

"0", if x isan operator, or

"p", if x isauser-defined function.

l'i nk prockind

Copyright © 1996. Thomas W. Christophe59

Icon Programming Handbook

Table 10 Procedures that apply to procedures

procname(x)

returns the name of the procedure value x (which can
also be arecord constructor or operator), or failsif x is
not a procedure. If x is an operator, its name has its
number of parameters appended on the right, e.g.

procname(write) yields"write"
procnanme(proc("...",3)) yieds". .. 3"

l'i nk procnane

type(p)

"procedure”

60 Copyright © 1996. Thomas W. Christopher

Strings and Character Sets

Chapter 6 Strings and Character Sets

6.1 String literals

String literals are enclosed in double quotes, ". The backslash character isthe
incorporation character that is used to include quotes, backslashes and special
characters into the string.

Table 11 Representation of special characters

Character represents

sequence

\b backspace

\d delete

\e escape

\ f form feed

\ line feed

\n new line

\'r return

\'t tab (horizontal)

\'v vertical tab

\’ single quote

\ " double quote

\\ back slash

\ qqq the character with the octal code qqg. qqq rep-
resents up to three octal digits. Aslong asthe
following character isnot adigit in therange O
through 7, you may usefewer than three digits.

Copyright © 1996. Thomas W. Christophe|61

Icon Programming Handbook

Table 11 Representation of special characters

Character represents

sequence

\ xhh the character with the octal code hh. hh repre-
sents up to two hexadecimal digits, O through
9 and A through F (either upper or lower case)
representing 10 through 15. Aslong asthe fol-
lowing character isnot a hexadecimal digit,
you may use one hex digit.

\ e the control codec.

If you want to continue a string literal onto another line, break it just before a
printing character. Place an underscore at the end of the first line. Continue the
literal onthe second line, preceded, if you wish, by blanks and tabs For example,

"hel l 0, _
wor | d"

6.2 Positions in strings

The discussion in Section 2.6, Elementary strings, on page 25 was a bit simpli-
fied. Thepositionsin astring are not the positions of characters but the positions
between characters. The leftmost end of astring is position 1. The rightmost
end’s position is the length of the string plus one.

In addition, you are permitted to use zero and negative numbers as subscripts.
Position O isthe rightmost end of astring, -1 isthe position just before the right-
most character, and minus the length of the string is the position of the left end.

For example, the positionsin string "Frog" are:

" F r 0 g "
1 2 3 4 5
-4 -3 -2 -10

6.3 Subscripting
If you subscript a string
s [1]

you select the single character substring to the right of positioni. Integer i may
be positive or negative aslong asits absolute valueis no greater than the length

62 Copyright © 1996. Thomas W. Christopher

6.4

Strings and Character Sets

of the string. If i isout of range, subscripting fails. For example

s [1] selects the first character in the string (if it has at least one
character)

s [-1] selects the last character in the string (if it has at least one
character)

s [0] fails, there is no character following position O.

Y ou can assign to asubstring of avariable. Y ou cannot assign to a substring of
avalue: i]:="x" isokay; "abc"[i]:="Xx" isnot.

Sectioning: subscripting ranges
If you subscript a string with arange
s[i :]]
you select the substring from position i to position j.

* Integers andj may be positive or negative or zero in the range—length of
the string up to length of the string plus one.

» The substring selected goes from the leftmost position to the rightmost po-
sition specified. Either orj may specify the leftmost position. For exam-
ple,i may be less than, equal to, or greater fhan

* If i=j,then an empty substring is selected.

* You can assign to a substring of a variable. You cannot assign to a substring
ofavalue:s[i:j]:="x" isokay;"abcde"[i:]]:="x" isnot.

* Ifi orj is out of range, subscripting fails.

For example

s [2: 0] selectsallbutthe first character in the string (if it has at
least one character)

s [-1:1] selects all but the last character in the string (if it has at
least one character)

Another way to specify ranges is by specifying one position and the distance to
the other position:

form means
s [i i +j]
s [i -7

Copyright © 1996. Thomas W. Christophe|63

Icon Programming Handbook

6.5 String operators
The binary string operators are concatenation and comparison.

» For the comparison operators, if one operand is a prefix of the other, the
longer is greater than the shorter.

» Ifanoperand is not a string, it is converted to one, if possible. If not possible,
Icon causes a run-time error.

The unary operators for strings are length, generation, and random selection.

Table 12 String operators

operator precedence | explanation
sl || s2 7 concatenation
sl == s2 6 equal
sl ~== s2 6 not equal
sl << s2 6 less than
sl <<= s2 6 less than or equal
sl >> s2 6 greater than
sl >>= s2 6 greater than or equal

*'s 12 length of the string

s 12 generates the one-character sub-
strings of s, equivalent to s[1 to *s].
If s is a variable, !s generates var|-
ables.

?s 12 produces a randomly generated one
character substring of s. If s is a vari-
able, ?s is a variable.

Example.
s: ="abcde"
every !s:=""
wite(s)
would write
bd
While
s: ="abcde"

every !s:="xy"

would execute until it runs out of string space.
64 Copyright © 1996. Thomas W. Christopher

6.6

Strings and Character Sets

String editing and conversion functions

Icon excelsin string handling. It provides alarge collection of built-in proce-
duresfor string formatting and editing. In addition, several more are provided
by the Icon Program Library (indicated by "link" in their specifications).

Table 13 String editing and conver sion functions

center(s,i)

produces a string of length i containing
string s centered in it with blanks append-
ed to both sidesto fill out the field. If
*s>j, then it returns the middle i charac-
tersof s.

center(sl,i,s2)

produces a string of length i containing
string s1 centered in it with copies of
string s2 appended to both sidesto fill out
thefield. If *s>i, then it returns the mid-
dlei characters of s.

char (i)

produces aone character string wherethe
single character has the internal represen-
tation given by integer i, O<i<255.

conpress(s,c)

Let x be acharacter in set c. A substring
of scomposed entirely of character x is
replaced with a single character x. (Char-
acter sets are presented in 6.8 on page
68.)

link strings

detab(s,il,i2,...

copies string s replacing tab characters
with blanks. The integer parameters give
the tab stops. If more tab stops are need-
ed, thelast interval is repeated.

entab(s,il1l,i2,...

copies string sinserting tabs where possi-
ble. The integer parameters give the tab
stops.

I mage(s)

produces a legible image of string s con-
tained in double quotes. Characters\ and
" arerepresented \\ and \". Specia charac-
tersarerepresentedinaformgivenin Ta-
ble 11 on page 61, but if thereisno \c
representation available, then the \xhh
formis used.

Copyright © 1996. Thomas W. Christophe|65

Icon Programming Handbook

Table 13 String editing and conver sion functions

| mage(cs)

produces a legible image of cset cs con-
tained in single quotes. Characters\ and’
arerepresented \\ and \". Special charac-
tersarerepresentedinaformgivenin Ta-
ble 11 on page 61, but if thereisno \c
representation available, then the \xhh
form is used. (Character sets are present-
ed in 6.8 on page 68.)

I mage(n)

produces the string representation of
number n.

I mage(x)

produces alegible image of object x. For
the mutabl e objects, the general format is
"type_nun{si ze)" ,wheretype
identifies the type of object, numidenti-
fies the particular instance of that type,
and size gives the number of elementsit
contains.

left(s,i)

produces a string of length i containing
string sleft justified with blanks append-
edto theright tofill out thefield. If *s>i,
then it returns § 1:i+1]

left(sl,i,s2)

produces a string of length i containing
string sl left justified with copies of
string s2 appended to the right to fill out
thefield. If *s>i, then it returns g[1:i+1]

map(sl, s2,s3)

creates anew string whichisacopy of sl
except for replacements made asfollows:
It replaces each character s1i] that occurs
in s2 at s2[j] with the character s3][j].
Stringss2 and s3 must bethe samelength.
If the same character occurs more than
once in s2, the rightmost occurrence de-
termines the replacement character.

mapstrs(s,|1,12)

replaces substrings. Lists|1 and 12 con-
tain strings. Each occurrence of astring
of ILlinsisreplaced. Anoccurrenceof the
ith string of 11 in sisreplaced by theith
string in12. If 12 is shorter than |1, the
rightmost, unpaired stringsin |1 are delet-
ed. In casesof overlap, theleftmost match
Is preferred. If two strings match at the
same location, the longer is preferred.

link mapstrs

66 Copyright © 1996. Thomas W. Christopher

6.7

Strings and Character Sets

Table 13 String editing and conver sion functions

repl (s,i)

produces astring equal to i copies of s
concatenated together

repl ace(sl, s2,s3)

replacesall occurrencesof substrings2in
sl by s3.

link strings

reverse(s)

produces the string s reversed

right(s,i)

produces a string of length i containing
string s right justified with blanks ap-
pended to the left to fill out the field. If
*s>i, then it returns g[-i:0]

right(sl,i,s2)

produces a string of length i containing
string sl right justified with copies of
string s2 appended to theleft tofill out the
field. If *s>i, theniit returns §-i:0]

string(x)

converts anumber or acset to a string.

trin(s)

produces a copy of string swith trailing
blanks removed

trims,cs)

produces a copy of string swith al the
rightmost charactersthat are contained in
cset csremoved. (Character sets are pre-
sented in 6.8 on page 68.)

type(x)

produces a string naming the type of ob-
ject s, one of:

"integer" "real" "string"
"cset" "list"

"tabl e" "set" "procedure"
" co- expressi on" "window"

or the name of arecord type.

Idiom: map

The map function

map(sl, s2,s3)

copiesstring s 1, replacing the charactersthat occur in s2 with the characters at
thesamepositionsin s 3. For example, s: =map(s, "\t"," ") will replace

tabsins1 with blanks.

A different, and often more useful way to think of thisisthat the charactersin
s3 are placed into the form given in string s1. Characters of s3 may be moved

Copyright © 1996. Thomas W. Christophe|67

Icon Programming Handbook

around, omitted, or have other characters inserted. For example, the keyword
&dat e givesthe current dateintheform” yyyy/ nm dd" . Wecan put it into
theform " nmi dd/ yy" asshown next. Inthe string " abcdef ghi j " charac-
tersabcd select thedigitsintheyear, f g themonth, and/ j theday. Characters
e and h select the slashes. The code

wite(&date)
s:=map("fg/ij/cd", "abcdefghij", &lat e)
wite(s)

wrote out

1996/ 02/ 03
02/ 03/ 96

6.8 Character sets: cset

Character sets are used with string scanning procedures. Y ou will often want to
scan over astring of charactersin aset, or up to any character in aset. Y ou spec-
Ify those character sets with the Icon cset type.

6.8.1 Character set literals

Y ou writeacharacter set literal surrounded by single quotation marks. Table 11
on page 61 shows the way to represent special characters in a cset literal—the
form is the same as for string literals..

6.8.2 Character-set valued keywords
Several keywords have cset values.

Table 14 Keywords with cset values

&asci i produces the character set containing all ASCII charagters
(128 characters).

&cset produces the character set with all characters present|(256
characters).

&digits ' 0123456789’

&l case " abcdef ghi j kI mopqgr st uvwxyz’

&etters * ABCDEFGHI JKLMNOPQRSTUVWKYZab
cdef ghi j kIl mopgr st uvwxyz’

&ucase " ABCDEFGHI JKLMNOPQRSTUVWKYZ'

6.8.3 Character set operators

The cset operators are what you would expect for sets: Union, intersection,

68 Copyright © 1996. Thomas W. Christopher

6.9

Strings and Character Sets

complement, and relative complement, plus the size operator (the unary *).

Table 15 Character set operators

nth

operator precedence explanation

~C 12 a cset with the characters notin

* C 12 the number of characters in the aset

cl ** c2 9 the intersection of character sefisandc 2,
I.e., containing only those characters in bg
cl andc?

cl ++ c2 8 the union of character s&t& andc?2, i.e.,
containing those characters in eithéror
c2

cl -- c2 8 the difference of character sets andc?2,

l.e., containing only those character<ih
that are not irc2

String scanning functions

String scanning functions are used to search for patternsin strings. They gener-
aly behave asfollows:

* The string scanning functions in Icon have the general form

function(x,s,i,j)

where the parameters represent

X what to look for,

S string to look in,

[starting position,

] ending position.

» They succeed if they find what they are looking for. They fail if they don't.

* Some of the functionsany, bal , many, mat ch— expect to find what
they are looking for at the starting position of the scan. If they succeed, they
return the position just beyond the string they found.

* The other functions-H nd andupt o— hunt through the string generating
all the positions where they find what they are looking for.

» If the starting position i is to the right of position j, then the roles afdj
are reversed, i.e. the function behaves as if it were called

Copyright © 1996. Thomas W. Christophe|69

Icon Programming Handbook

function(x,s,j,i).

Table 16 String scanning functions

any(c, s) returns 2 if §[1] existsand isin character set
C; otherwiseit fails
any(c,s,i) returns i+1if gi] existsand is in character

set c; otherwiseit fails

any(c,s,i,j)

returnsi+1if i<j and g[i] existsand gi] isin
character set c; otherwiseit fails

bal (c1, c2,c3,s)

generates the positionsk in swhere
1<k<*st+1 and g[K] (if it exists) isin cset c1,
the number of charactersin §1:k] in cset c2
egualsthe number in c3, and thereis no posi-
tion m, 1<msk, where the number of charac-
tersin g1:m] in cset c2 is less than the
number in c3.

bal (c1,c2,c3,s,i)

generatesthe positionsk inswhereisk<*s+1
and g[k] (if it exists) isin cset c1, the number
of charactersin gi:k] in cset c2 equalsthe
number in c3, and there is no position m,
ismsk, where the number of charactersin
gli:m] in cset c2 islessthan the number in c3.

bal (c1,c2,¢3,s,i,j)

generatesthe positionsk inswherei<k<j and
gk] (if it exists) isin cset c1, the number of
charactersin g[i:K] in cset c2 equal s the num-
ber in c3, and thereis no position m, ismsk,
where the number of charactersin gi:m] in
cset c2 isless than the number in c3.

find(sl, s2)

generates the positionsk in s2 from 1 to *s2-
*s1 which contain the beginning of the oc-
currences of sl, i.e., where s2[k+:*s1]==sl.
It failsif no occurrences of sl are found.

find(sl,s2,i)

generates the positions k in s2 from i to *s2-
*s1 which contain the beginning of the oc-
currences of sl, i.e., where s2[k+:*s1]==sl.
It failsif no occurrences of sl are found.

find(sl,s2,i,j)

generatesthe positionsk in s2 fromi to j-*sl
at which sl occurs as asubstring, i.e., where
s2[k+:*s1]==sl. It failsif no occurrences of
sl are found.

70 Copyright © 1996. Thomas W. Christopher

Strings and Character Sets

Table 16 String scanning functions

many(c, s) returnsthe position in sfollowing the longest
initial substring in cset c. Returns *s+1 if all
the charactersarein c. Failsif thefirst char-
acter of sisn'tinc. (Thissavesyou from hav-
ing to write something like: (upto(~c,s) |
(any(c,9)&*st+1)) \1.)

many(c, s, i) returnsthe position in sfollowing the longest
initial substring in cset ¢ beginning at posi-
tioni. Returns*s+1if all the charactersarein
c. Failsif g[i] isn'tinc.

many(c,s,i,]) returnsthe position in sfollowing the longest
initial substring in cset ¢ beginning at posi-
tion i and not extending beyond position j.
Returnsj if al the charactersarein c. Failsif
di] isnot incor if i:j] would fail (i.e., the
range is not valid).

mat ch(s1, s2) returns*sl+1 if s2[1+:*s1] == s1; otherwise
falls

mat ch(sl,s2,i) returns *sl+i if s2[i+:*sl] == sl; otherwise
fails

mat ch(sl,s2,i,j) returns *sl+i if s2[i+:*sl] == sl; otherwise

fails. Requires position j to be at least *sto
the right of position i or it will fail.

segnent (s, c) generates a sequence of stringswhich arethe
longest substrings of sfrom left to right com-
posed solely of characters that alternatively
do or do not occur in c.

l'i nk segnent
sl ashbal (like bal, but does not count a character from
cl,c2,c3,s,i,j) c2 or c3 that is preceded by abackslash char-

acter when determining balance.

i nk sl ashbal

sl shupto(c,s,i,j) like upto, but treats backslash as an incorpo-
ration character in s, preventing the position
of following character from being generated.
Parameterss, i, and j default asin the built-in
functions, but requiresis<j. (Warning: slshup-
to is reputed to have bugs.)

l'i nk sl shupto

Copyright © 1996. Thomas W. Christopher71

Icon Programming Handbook

Table 16 String scanning functions

upto(c,s) generates the positions in s from 1 to *s

. 1€ p .) 7S
which contain characters in set c. Fails if no
such character is found.

upto(c,s,i) generates the positions in s from position i/ to
*s which contain characters in set c. Fails|if
no such character is found.

upto(c,s,i,j) generates the positions in s from position i/ to
position j which contain characters in set ¢.
Fails if no such character is found.

6.10 Automatic conversions

Icon will automatically do conversions among numbers, strings, and character
sets. See Chapter 13 on page 127.

* Ifanumberis used in a context that requires a string, it is automatically con-
verted to its string representation.

» If a string is used in a context that requires a number, it must contain a rep-
resentation of a number. It is converted to a number if possible, otherwise
there is a run-time error.

» Ifacharacter setis used in a context that requires a string, it is automatically
converted to a string. The string will have each character in the set occurring
once, sorted by their numeric representations' order.

» Ifastring is used in a context that requires a character set, it is automatically
converted to a character set containing all the characters that appear in the
string.

* If anumber is used in a context that requires a character set, it is first con-
verted to a string and then the string is converted to a character set.

6.11 Examples of strings
6.11.1 Finding the rightmost occurrence

You can find the first occurrence of a substring usingd. You can find the
last occurrence by putting tiie nd in an every expression. In the following,
we find the position of the rightmost " in a string:

Figure 17 Find last occurrence
#find | ast occurrence of "."
i:=0
every i:=find(".",s)
6.11.2 Squeezing whitespace
Suppose we wish to remove leading and trailing whitespace from a string and

72 Copyright © 1996. Thomas W. Christopher

Figure 18

6.11.3

Figure 19

6.11.4

Figure 20

6.11.5

Figure 21

Strings and Character Sets

replaceinternal whitespacewith single blanks. For our purposes, whitespacein-
cludes blanks and tabs. Here is code that will do it. First we replace tabs with
blanks; then trim blanks from the right. The third line removesinitial blanks.
The fourth line repeatedly finds pairs of blanks and then replaces the longest
string of blanksit can find at that position with a single blank.

Squeezing whitespace

s:=map(s,"\t"," ")

s:=trin(s)

s[1.many(" ",s)] :=""

while s[i:=find(" ",s):many(" ",s,i)]:=""

Converting two hex digits to a character

Here's some code to convert astring of two hexadecimal digitsto acharacter. If
the argument is longer than two digits, the first two digits are used. The code
uses the radix notation (see section 7.1 on page 83) to let Icon do the conversion
of the hex number to an integer.

Converting two hex digitsto a character

#hex to char

procedur e hexToChar (h)

return char(integer("16r"||(h[21:3]]h)))
end

Converting a character to two hex digits
Hereis code to convert acharacter to a pair of hexadecimal digits:
Converting a character to two hex digits

#char to hex

procedur e char ToHex(c)

| ocal n

static hex

initial hex:= "0123456789ABCDEF"
n: =ord(c)

return hex[n/16+1]| | hex[n%d6+1]
end

Removing backspaces

Hereiscodeto copy itsinput into its output, removing backspaces and the char-
acter preceding them. A backspace at the beginning of alineissimply left there.

Removing backspaces

#renmove backspaces

procedure main()

while s:=read() do {
while i:=find("\b",s,2) & s[i-1+:2] :=""
wite(s)

Copyright © 1996. Thomas W. Christopher73

Icon Programming Handbook

6.11.6

Figure 22

6.11.7

end
Generating character set tests for C

One great use for Icon iswriting little tools to help with programming in other
languages. Hereisasubroutine to write out a C procedure to test whether achar-
acter isin acharacter set. It is given the name for the test procedure, the charac-
ter set, and the number of bitsin an unsigned integer for the destination system.

Generating character set tests for C

#gen C char set tests

procedure cset Test| nC(nane, cs, bitsPerlnt)

local a, i, j, m n, nunPerlLine

nunPerLine := 4

m =(256+bi t sPerlInt-1)/bitsPerlnt

a:=list(mO0)

every c:=!cs & n:=ord(c) & i:=n/bitsPerint &

] :=n%bi tsPerlnt do
a[i+1]:=ior(a[i+1],ishift(1,j))

wite("unsigned int ",nanme,"(int c) {")

wite(" static unsigned int a[]={")

] = nunPerLi ne

every i:=1to m1l do {
wites(a[i],",")
j-:=1

iIf j=0 then {wite(); j:= nunPerlLine }

\}Nrite(a[-l],"};")

wite("return ((a[c/",bitsPerint,"]>>(c%, bitsPer-
Int,"))&L);\n}")

end

The call
csetTestInC("letter", & etters, 16)
will write out

unsigned int letter(int c) {
static unsigned int a[]={

0,0, 0,0,

65534, 2047, 65534, 2047,

0,0, 0,0,

0, 0,0, 0};

return ((afc/16]>>(c%l6))&1);

}

Generate identifiers

Hereis a procedure to generate all the identifiersin astring.

74 Copyright © 1996. Thomas W. Christopher

Figure 23

6.11.8

Figure 24

6.12
6.12.1

Strings and Character Sets

ident: Generating identifiers

#generate identifiers in string
procedure idents(s)

local i, j, initldChars, idChars
initldChars := & etters++ ’
idChars := initldChars++&digits
=1

while j := upto(initldChars,s,i) &

not any(idChars,s[j-1]) &
k := many(idChars,s,j) do {
suspend s[j : k]
i =
}

end

Notice that we need to check that the character preceding the identifier could
not itself be part of an identifier. When you have to do such checks, you might
wish to consult thefilelastc.icninthelcon Program Library which hasaroutine
to do such checks. It also hasaroutine to generate positionsin astring of aspec-
ified substring delimited by characters from a specified set.

Primes sieve

Hereis aprogram to write out the primes up to 1000 using the Sieve of Era-
tosthenes. Compareit to Figure 26 on page 87 which shows the same algorithm
using bit operations.

Primes sieve using strings

procedure main()
| ocal p,i,j,n
n: =1000
p:=repl ("1", n)
every i:=2 to sqrt(n) do

if p[i] =="1" then

every j:= i+ ton by i do p[j]:="0"

every i:=2 tondo if p[i]=="1" then wite(i)
end

Scanning Strings

Scanning

Thefunctionsany, many, mat ch,f i nd, andupt o aspresented in section 6.9
on page 69 are inconvenient to use. They require you name the string over and
over again, although you are probably looking through only asingle string at a
time. They also require you to use integer variables to keep track of your posi-
tion in the string, although each match typically starts where the previous one

left off.

Icon allows you to get around these annoyances. It allows you to announce at a
beginning of an expression what string you will be scanning and it keeps track

Copyright © 1996. Thomas W. Christopher75

Icon Programming Handbook

6.12.2

6.12.3

of the position in that string for you.
Y ou specify which string you will be scanning with the binary ? operator.
s ?e

means that within expression e you will be scanning the string s. Y ou almost
always need to follow the question mark by an expression sequence in braces.

The way Icon remembers which string you are scanning is by assigning it to
keyword &subj ect . It remembers where you are in the string in the keyword
&pos.

When you use the scanning operation s ?e, lcon

+ evaluates

saves the previous values&fubj ect and&pos

» assigns the value of s&subj ect and the number 1 ®pos
e evaluate®

* restores the old values & ubj ect and&pos

» vyields the value o as the value of the scanning expression

Of course, backtracking in® will reestablish the values &5ubj ect and
&pos to continue the scan. Backtracking oueafill reestablish the values of
&subj ect and&pos outside of the scanning expression and will backtrack
into s to generate more strings to scan.

Functions tab and move

Although you can assign &pos, the typical way of changing it is through the
functionst ab andnove. Proceduré ab sets&pos to an absolute position in
&subj ect ; nove assignkpos a position relative to its current value. Both
procedures return the substring tBpbs moved past, i.e., between its initial
and final positions.

Proceduré ab is used with the string scanning functions as described in the
next section.

String scanning functions revisited

The string search functions described above in section 6.9 on page 69 will scan
&subj ect from position&pos up to the end of the string if you do not specify
any other string or position. That is to say, if you do not specify some other
string:

they will search stringsubj ect

they will start their operation &pos

76 Copyright © 1996. Thomas W. Christopher

6.12.4

Strings and Character Sets

they will search the entire rest of & ubj ect totheright of &pos

if they are successful, they return a new position just following what they

scanned past.

you uset ab to move &pos past the string that was scanned.

Table 17 String scanning, revisited

any(c) any(c,& subject,& pos,0)

bal (c1, c2, c3) bal(c1,c2,c3,& subject,& pos,0)

find(sl) find(s1,& subject,& pos,0)

many(c) many(c,& subject,& pos,0)

mat ch(sl) match(sl,& subject,& pos,0)

nove(i) moves &pos to position &pos+i in &subj ect
and returns the substring between the original po-
sition of &pos and its new position. The new po-
sition can be zero or negative, but &pos iskept as
apositive number. The assignment to &pos isre-
versible: when nove isresumed during backtrack-
ing, &pos will be set back toits origina position
before the move.

sl ashbal (sl ashbal (c1, c2, c3, &sub-

cl,c2,c3) j ect, &pos, 0)

link slashbal

sl shupt o(c)

sl shupt o(c, &ubj ect, &pos, 0)
link slshupto

tab(i)

moves &pos to positioni in&subj ect and re-
turns the substring between the original position of
&pos and itsnew position. Positioni can be zero
or negative, but &pos iskept asapositive number.
The assignment to &pos isreversible: when re-
sumed during backtracking, &pos will be set back
toitsorigina position beforethet ab.

upt o(c)

upto(c,& subject,& pos,0)

Matching a string, = e

The unary = operator teststo seeif its operand string occurs next in the &sub-
j ect string and moves &pos past it if it does, i.e.,

Copyright © 1996. Thomas W. Christopher77

Icon Programming Handbook

6.12.5

6.12.6

6.12.7

Figure 25

6.13

= e
Isequivalent to
tab(match(e))
Scanning with assignment, ?:=
The scanning operator can be combined with assignment.
v ?:= e

initialized &subj ect and &pos fromthe string value of v. Expression e scans
&subj ect . Thevalue e producesisassigned to v.

Y ou will often use this operator to replace a pattern in the middle of a string.
Y our code will probably look like this:

v ?:= tabover prefix | |
(tab over pattern , replacement string) | |
tab(0)

Testing &pos, pos(i)

The procedure pos(1) succeedsif &oos isat postioni in&subj ect . Al-
though you could test &pos=i , that will only work for positive valuesof i .
Procedure pos also allows zero and negative positions to be specified, so the
most common useispos(0) to seeif the entire string has been scanned.

Example
Here'saversion of thei dent s procedure using string scanning operations:
idents with ? and tab

#generate identifiers in string
procedure idents(s)

local i, j, initldChars, idChars
initldChars := & etters++ ’
idChars := initldChars++&digits

s ? suspend tab(upto(initldChars)) &
pos(1l) | (nove(-1),tab(any(~idChars))) &
tab(many(i dChars))
end

Regular expressions

Regular expressions are away to express lexical patterns, e.g. numbers, identi-
fiers, operators, and punctuation. UNIX software such asLEX and EGREP use
aform of regular expressions for pattern matching.

The Icon Program Library provides two modules that deal with regular expres-
sions: findre.icn and regexp.icn.

78 Copyright © 1996. Thomas W. Christopher

6.13.1

findre

Strings and Character Sets

File findre.icn defines one procedure,

findre(re,s,i,j)

wherereisastring containing theregular expression, and s, i, and j areasusual.
Touseit, besuretoincludel i nk fi ndre. Most charactersin theregular ex-
pression represent themselves, but some have special meanings:

Table 18 Regular expression special characters

matches any single character.

matches one or more occurrences of the preceding element, e.g. a+
matches one or more a’s.

matches zero or more occurrences of the preceding elemerd*e.

0.

matches zero or moegs. Procedure findre uses a shortest match first

algorithm, so* will first match zero occurrences of the precedin
pattern.

0)

Groups the regular expression within the parentheses into a sin
ement, usually for a followinyy or +.

gle el-

incorporates the following character, removing its special mean
e.g.\ + matches a single charactery ++ matches one or moreés.

ng,

separates alternatives, €.¢| 1) + matches a nonempty string of z
ros and ones.

e-

[]

Matches any one of the characters listed between the brackets,
[0123456789] matches any digit.

e.g.

At the beginning of a regular expressiérforces the expression tg
match at the beginning of the string. At the beginning of a chara
set, i.e. just following thg, it causes the set to be complement of
following characters, e.d.*0123456789] matches any characte
except a digit.

cter
the
b

At the end of a regular expressi@matches only at the end of thé
line.

Aswithfind, findreisagenerator, generating theleftmost positionsat which the
regular expression matches. The position to theright of the matching expression
Isassigned to global variable __endpoi nt , to which you can tab to get past
the expression.

Copyright © 1996. Thomas W. Christopher79

\1%4

Icon Programming Handbook

6.13.2 regexpr

File regexpr.icn contains three procedures of significance, shown in Table 19.

Table 19 Proceduresin regexpr.icn.

ReMat ch(re,s,il,i2)

generates the positionsin s following occur-
rences of regular expressionr e beginning at
I 1. Regular expressionr e can be astring
representation of aregular expression, or a
list representation created by procedure
RePat (s) .

l'i nk regexp

ReFind(re,s,i1,i?2)

generatesthe positionsin s of occurrences of
regular expression r e. The positions gener-
ated will be the leftmost positions of the
matching strings. Regular expressionr e can
be a string representation of aregular expres-
sion, or alist representation created by pro-
cedure RePat (s) .

l'i nk regexp

RePat (' s)

trandlates a string representation of aregular
expression into alist representation. If you
are going to use the same expression repeat-
edly, it isbest to translate it with RePat
once rather than having ReMat ch or

ReFi nd translate the string representation
repeatedly.

l'i nk regexp

The components of a regular expression used by module regexp are a superset

of those provided by findre.

Table 20 Regexp special characters.

matches any single character.

+ matches one or more occurrences of the preceding element, e.g.
a+ matches one or morea’s.
* matches zero or more occurrences of the preceding elemen

a* matches zero or moegs. Module regexp by default uses 3
leftmost longest match first algorithm, sawill first match as
many occurrences of the preceding pattern as it can.

L e.g.
|

? matches zero or one occurrence of the preceding element.

80 Copyright © 1996. Thomas W. Christopher

Strings and Character Sets

Table 20 Regexp special characters.

0)

Groupstheregular expression within the parenthesesinto asingle
element, usually for afollowing * or +.

incorporates the following character, removing its special mean-
ing, e.g.\ + matchesasingle + character; \ ++ matches one or
more +'s.

separates alternatives, €.6] 1) + matches a nonempty string
zeros and ones.

[]

Matches any one of the characters listed between the bracket
[0123456789] matches any digit.

between two characters within a character-satdicates all the
ASCII character sequence, €.@- 9] represents any digit,

[A- Za- z0- 9_] represents any character that can occur in
Icon identifier.

an

At the beginning of a regular expressiorfprces the expressio
to match at the beginning of the string. At the beginning of a ¢
acter set, i.e. just following tHe it causes the set to be compl
ment of the following characters, e[d:0123456789]
matches any character except a digit.

har-

At the end of a regular expressi@imnatches only at the end o
the line.

[

{N}

whereNis a number matches exactly N occurrences of the pre
ing element.

rced-

{N}

whereN is a number matches N or more occurrences of the
ceding element.

pre-

{M N

whereMandN are numbers, matches no fewer than M and n¢
more than N occurrences of the preceding element.

\'N

whereNis a single digit from one to nine, matches the same s
that a preceding parenthesized subexpression matched. Th¢
renthesized expression selected is the one beginning with th
"(" counting from the left.

[ring
2 pa-
e Nth

\'w

matches any character that can occur in an Icon identifier, i.
&letters ++ &digits ++’_’

\W

matches any character not matched by \w .

\b

matches at aword boundary, i.e. between a character in\w and
\W, in either order.

\B

matches anywhere\b doesnot, i.e. within stringsof \w or \W
characters.

Copyright © 1996. Thomas W. Christophe|81

Icon Programming Handbook

Table 20 Regexp special characters.

\'s

matches any whitespace character.

\'S

matches any character that isn't whitespace.

\d

matches any digit, i.e. is equivalen{ t0- 9] .

\D

matches any non-digit, i.e. is equivalenf t@- 9] .

82 Copyright © 1996. Thomas W. Christopher

Arithmetic

Chapter 7 Arithmetic

7.1

Like most languages, con provides both integer and real data types. Unlike
most languages, |con provides integers of unbounded precision.

Numeric literals

Integer literals (constants) can be written in either decimal or radix format. A
decimal literal iswritten just as a string of digits, e.g.,

1066
0
025

A radix literal can be used to write an octal constant, or hexadecimal, or any ra-
dix from 2 to 36. It iswritten as the radix, in decimal, followed by the letter R

(in either upper or lower case) followed by astring of digitsand lettersthat spec-
ifiesitsdigits. Theletter A represents 10; B, 11; all theway to Z, 35. Upper and
lower case letters are considered the same. For example,

8r31
16R19
30rP
2r 11001

Notice that there are no negative integer literals. If you write something like
- 10, you arereally applying the - operator to the literal 10.

Real literasarewritten in decimal using either decimal point or an exponent or
both, e.g.,

25.0
25e0
2. 5E+1
250e-1

Redl literals are generally of the form given by the following grammar:
real_literal = digits “.” [digits] [(‘€”|” E")[* - "|" +"] digits.
digits = digit {digits}.
digit = “0”["1""2"|"3"|"4"|"5"|"6"|" 7"|" 8”|" 9".

Copyright © 1996. Thomas W. Christophe|83

Icon Programming Handbook

7.2

Note: Thegrammar isnot part of Icon; it isused to describe Icon. In the gram-
mar, al literal characters are quoted. The equal sign definesthe name on itsleft
hand side to match the pattern on itsright. The vertical bar separates alterna-
tives. Parentheses group alternatives. Brackets enclose things that may or may
not be present. Braces enclose things that may be present any number of times
or may be absent entirely.

In arecent version of Icon, real literals were allowed to begin with a decimal
point rather than adigit. In previous versions, they were not. Now one-half can
bewritten . 5 rather than 0. 5.

Operators
Icon provides the normal arithmetic operators.

Of the binary operators, exponentiation (") is performed before multiplication,
division, and remainder (*,/ , %9, which are performed before addition and sub-
traction (+ and -).

A binary operation is performed in real arithmetic if either operand isreal. If
both operands are integer, it is performed as an integer operation.

Exponentiation associatesto the right while the other binary operators associate
to the left. It makes more sense that way: 3733 = 3™(3"\3) = 327
=7625597484987. If it associated to theleft, it would yield (3*3)"3 =37(3*3) =
379 = 19683.

Y ou can use a string as an operand: it will automatically be converted to the
number it represents. If the string does not represent anumber, the program will
stop and write out an error message. (Icon can convert negative numbers.)

There is arandom number generator operator, ?. When applied to a positive in-
teger n, ?n produces arandomly chosen integer in the range 1 to n. When ap-
plied to zero, it produces arandom real in the range 0.0 to 1.0.

Table 21 Arithmetic operators

operator precedence explanation

+ X 12 numeric value. If x isanumber, it isleft unal-
tered. If it isthe string representation of anum-
ber, it is converted to the corresponding

number.
- X 12 negative
? 0 12 producesarandom integer intherange 1toi if

I isan integer greater than zero.

produces arandom real number in the range
00to1.0ifi=0.

el N e2 10 exponentiation. Right associative.

84 Copyright © 1996. Thomas W. Christopher

7.3

Arithmetic

Table 21 Arithmetic operators

operator precedence explanation

el * e2 9 multiplication

el /| e2 9 division

el %e2 9 remainder. The sign of result is the sign of 1.

This operation works for both integer and regal.
For real operands, el%e2=el-integer(el/

e2)*e2.
el + e2 8 addition
el - e2 8 subtraction

All binary operators (except assignment itself) can be combined with the assign-
ment operator in the form

op: =

to perform the operation on the left and right operands and assign the result to
the left. The most common use, no doubt, is

i +:=1
which increments variablei.
Large integers

Icon allowsintegersto be arbitrarily large, but it uses amore efficient represen-
tation for standard sized integers up to the wordsize of the computer. There are
afew problems with large integers:

» toandseq do not work with large integers.

» large integer literals are converted from character strings when they are en-
countered in the program. You should avoid writing them in loops.

» Converting large integers to character strings can take a long time.
* Not all Icon implementations provide large integers.
If you want to test whether an integer,is a large integer, do the following:
* include in your program
link |arge

o call

| arge(1)

Copyright © 1996. Thomas W. Christophe|85

Icon Programming Handbook

which returnsthevalueof i if i isalargeinteger and failsif i isnot.
7.4 Conversion functions
There are four built in functions that convert values to an integer or real:

Table 22 Built-in number conversion

numeri c(x) will convert a string representation of a number to the
numeric representation. It will leave anumber unaltered.
It will fail if the conversion is not possible.

I nt eger (x) will convert areal to aninteger, or astring representation
of anumber to an integer. Even if x isastring represen-
tation of areal, it will be converted to an integer. Anin-
teger isleft unaltered. It will fail if the conversionis not
possible.

real (x) convertstoarea, but islikeinteger(x) otherwise. It will
fail if the conversionis not possible.

ord(s) takes a one character long string and converts the char-
acter to the integer that representsit in the character set.
For example, in ASCIl, ord(" A") =65.

The integer, real, and numeric functions will fail if their operands cannot be
converted. The program can catch the failure and take some appropriate action.
If you just pass the operand to an arithmetic operator and it cannot be converted,
the program will terminate with an error message.

There are several more conversion functions available in the Icon Program Li-
brary to convert reals to integers. To use them, include the linkage declaration

i nk real 2i nt

Table 23 Other conversions fromreal to integer

ceil(r) nearest integer to r away from O

floor(r) | nearestinteger tor toward O

round(r) | nearestintegertor

sign(r) sgnofr:-1if risnegative, Oif risO, 1if rispositive.

trunc(r) | nearestinteger lessthanr

7.5 Bitwise operations on integers

Integers are represented as bit strings. If you number the bitsfrom O at the right,
bit number i contributes 2' to the value of the integer. In twos-complement rep-
resentation, the |eftmost bit in the n-bit number contributes not 2™ but its neg-

ative, -2™2. Icon provides a collection of functions to perform the usual bit-by-
86 Copyright © 1996. Thomas W. Christopher

Figure 26

7.6

Arithmetic

bit operations on integers. In other languages these operationswould be used to
represent sets, but Icon provides a more convenient set data type, see Chapter
11 on page 117.

Table 24 Bitwise operators

land(i,j) bitwise and: abit is set in the integer result only if itis
setinbothi and j.

I con(i) bitwise complement: abit is set in the integer result if
andonly if itisnot setini.

tor(i,j) bitwise or: abit isset in the integer result if itissetin
eitheri orj.

ishift(i,j) shift thebitsini by j positionsto theleft (if j>0) or [j| to
theright (j<0), filling with zeros.

I xor (i,]) bitwiseexclusiveor: abitisset intheinteger result only

if itisset in one or the other but not both of i and j.

Example. Hereisaprogram to compute primes by the "sieve of Eratosthenes.”
We set the bitsin along integer to represent their bit positions being potential

primes. (That is, we use the integer as a bit set.) Starting at 2, we examine bits.
If bit, i, isset (testedbyi and(p, i shift(1,1))~=0),itrepresentsaprime.
We go through all multiplesof that prime(j : = i+i to n by i) clearing
those bits, since those bits obvioudy represent composite numbers.

Prime sieve using bits

procedure main()
| ocal p,i,j,n

n: =1000

p: =i con(0)

every i:=2 to sqrt(n) &
land(p,ishift(1,i))~=0 &
j:=1+4 ton by i do
p: =i and(p,icon(ishift(1,j)))
everyi:=2tondoif iand(p,ishift(1,i))~=0 then
wite(i)
end

Numeric functions

Icon provides the common trigonometric and log functions. Note that |con ex-
presses anglesin radians, rather than degrees. It provides conversion functions,
dtor and rtod, to convert degreesto radians or vice versa. Hyperbolic functions

Copyright © 1996. Thomas W. Christophe|87

Icon Programming Handbook

areavailable in the IPL file hyperbal.icn.

Table 25 Trig. and numeric functions and keywor ds

abs(r) absolute value
acos(r) arccosineinradians, -1<r< 1.
asin(r) arcsneinradians, -1<r< 1.

atan(rl,r2)

arc tangent of r1/r2 in radians with the sign of r1.

atan(r) arc tangent of r in radians.

cos(r) cosine of r (given in radians)

cosh(r) hyperbolic cosine.
| i nk hyper bol

dtor(r) degreesto radians

&e The base of the natural logarithms. Approximately
2.71828182845904

exp(r) €, orinlcon, &e\r)

log(ri,r2) logarithm of r1 to the base r2

l og(r) loge I

&phi phi, the "golden ratio." Approximately 1.61803 = a/b
where alb=(atb)/a

&pi m, approximately 3.14159265358979

& andom The seed of therandom sequence. Y ou can assign anew
valuetoit.

rtod(r) convert radians to degrees

sin(r) sine of r (given in radians)

sinh(r) hyperbolic sine.
| i nk hyper bol

sqrt(r) square root of real r > 0.

tan(r) tangent of r (given in radians)

tanh(r) hyperbolic tangent.

| i nk hyper bol

88 Copyright © 1996. Thomas W. Christopher

1.7

7.8

Arithmetic

Complex

Complex numbers are not built in to Icon, but are provided inthe IPL filecom
pl ex. i cn, whichisto say, if you want to use them, include

i nk conpl ex

inyour program. The complex numbers are represented internally as records of
type

record conplex(rpart,ipart)
The string representation of complex numbersis given by the grammar:
["+" | "-"] number ("+" | "-") number "i"

which isto say, a complex number isan optional plus or minus sign, followed
by a number, followed by a plus or minus sign, followed by another number,
followed by the letter "i".

The procedures to perform operations on complex numbers are as follows:

Table 26 Complex arithmetic procedures.

conpl ex(r,i) create complex number with real part r and imaginary
part i

cpxadd(x1, x2) add complex numbers x1 and x2

cpxdi v(x1, x2) divide complex number x1 by complex number x2

cpxmul (x1, x2) multiply complex number x1 by complex number x2

cpxsub(x1, x2) subtract complex number x2 from complex number

x1
cpxstr(x) convert complex number X to string representation
strcpx(s) convert string representation s of acomplex number

to it's internal representation

Rational numbers

The Icon Program Library contains a package to manipulate rational numbers,
I.e. numbersthat are expressed astheratio of two integers. Internally, the ratio-
nal numbers are represented as records:

record rational (numer, denom si gn)
To use rational numbers, you will need to include the linkage declaration:

link rational

Copyright © 1996. Thomas W. Christophe|89

Icon Programming Handbook

The available procedures are:

Table 27 Rational arithmetic procedures.

str2rat(s) Convert the string representation of arational num-
ber (such as"3/2") to arational number.

rat2str(r) Convert the rational number r to its string represen-
tation.

addrat (r1,r2) Add rational numbers: r1+r2.

subrat(ri,r?2) Subtract rational numbers: rl - r2.

npyrat(rl,r2) Multiply rational numbers: r1 * r2.

divrat(rl,r?2) Divide rational numbers: r1/r2.

negrat (r) Negate arational number: -r.

reciprat(r) Get the reciprocal of rational number: 1/r.

The rational number package itself linksto ged.icn for agreatest common divi-
sor routine. Routines find the greatest common divisor and the least common
multiple areavailableingcdl cm i cn.

7.9 Random numbers

Icon has a built-in random number generator accessed by the unary question
mark operator.

Table 28 The random number generator, ? n.

?0 yields arandom real number in therange 0.0 < 20 < 1.0.

?n yields arandom integer in the range 1 < ?n < n, for integer n>0.

? X yields arandomly chosen element from a structure, e.g. string or
list.

The ? operator is not agenerator. It will not generate another random number
when backed into. For that you can use | ?n or some proceduresin the IPL.

The "seed" for the random number generator is the value of the keyword & ran-
dom. Keyword & random will change after each application of the ? operator. It
iIsthe value of &random initsrange (zero through some large value) that is con-
verted into arandom value returned by ?. Keyword & random starts at zero each
program execution, but it can be assigned other values to avoid having all exe-
cutions use the same sequence of pseudo-random values.

90 Copyright © 1996. Thomas W. Christopher

Arithmetic

There are anumber of filesin the IPL that relate to random number generation.

Table 29 Random number packagesin the IPL.

procedure description

gauss() returns a random number chosen from a gaus-
sian distribution with a mean of zero
i nk gauss

gauss_randon(x, f) returns a random number chosen from a gaus-

sian distribution with a mean of x. Larger val-
ues of parameter f will flatten the distributian.

| i nk gauss

random ze() a procedure to set the seed of the random
number generator to a value determined i
part from the date and time. You can use this
to avoid always generating the same sequence
of random numbers each time the program is
run.

=

i nk random z

randr eal (| ow, hi gh) returns a random real number, r, in the range
low < r < high.

i nk randreal

ranseq(seed) generates the values of &random starting at
seed.

link randseq

ranrange(m n, nax) returns a random integer in the range min|to
max, inclusive.

i nk ranrange

Y ou may wish to consult the following filesin the IPL aswell:

* Filerandom i cn contains Icon code to perform the same functions as the
built-in random number generator as well as to use different parameters.

* Filel cseval . i cn contains a procedure to evaluate parameters for con-
gruential random number generators.

7.10 Matrices

Icon does not have multi-dimensional arrays or matrices built in. They are built
using lists, see Chapter 9 on page 105. You can use the syntax A[i,j] instead of
A[i][j] to subscript two levels of lists, which gives the feel of matrices.

Copyright © 1996. Thomas W. Christophergl

Icon Programming Handbook

The Icon Program Library does provide some matrix and linear algebra proce-
dures. Seemat ri x. i cnandl u. i cninthelcon Program Library.

92 Copyright © 1996. Thomas W. Christopher

1/0

Chapter 8 1/O

8.1

File 110

Values of type file represent open files on which the program can read and

write. The program starts execution with three openfiles: & nput , &out put ,
and &er r out . Unlessanother fileis specified, read functionsread from & n-
put , write functions write to &out put , and error messages go to &er r out .

To open anew file for input or output, you call the procedure open which will
return afile object that you passto read or write to tell it which file to access,

eg.,

f:=open("x.txt","r")|
stop("cannot open x.txt")

The openwill fail if thefile can't be opened for reading. This code testsfor fail-
ure and terminates execution with amessage if it fails.

File namesfollow conventions of the operating system Iconisrunning on. How-
ever, Verson 9 for MSDOS allows UNIX path specifications, i.e., using /"
rather than "\".

Filel/Oinlconisbased on UNIX. In UNIX afile may be opened for reading or
writing. When opened for writing, the file position may be set at the beginning,
which would replace the contents, or at the end for appending. The open may
specify that the file be created, which requiresthefile not already exist. (Unless
you're the superuser, but that’s another matter.)

In UNIX, lines of text files are terminated by a newline character. When Icon
reads aline (function r ead) it strips the newline character off the end and re-
turnsthe line as a string. Function r eads, however, will return the newline
character like any other. When Icon is running on some other system, the open
function by default specifies that that system’s newline conventions be trandl at-
edinto UNIX’s, for example, trand ating carriage return/line feed sequencesinto
new lines. To read binary files, you must specify the” u" option to tell open
not to mess with the actual bytes, e.g.,

open(filenane, "ru")

In addition to the built-in functions and procedures, the Icon Program Library
provides several useful proceduresfor file 1/0O. They will be indicated, as al-

Copyright © 1996. Thomas W. Christopher93

Icon Programming Handbook

ways, with alink command that needs to be used to access them.

Table 30 Operations and functions on files

Pof

generatesthelinesof filef. Failson end of
file.

cl ose(f)

closes the file bound to file object f.

di splay(i,f)

writes to file f the names of thei most recently
called active procedures, their local variables, and
the global variables. Used for debugging.

di splay(i)

writesto &er r out thenamesof thei most recently
called active procedures, their local variables, and
the global variables. Used for debugging.

di spl ay()

writesto &er r out the names of all the active pro-
cedures, their local variables, and the global vari-
ables. Used for debugging.

dopen(s)

opens the file named s using default op-
tions(i.e.open(s,"rt")).If thefileis
not found in the current directory, all the
directories whose paths are listed in envi-
ronment variable DPATH are tried, left to
right until the file can be successfully
opened. The pathsin DPATH are separated
from each other with blanks; the directo-
ries within the paths are separated by "/ "
characters.

|l i nk dopen

&errout

the standard error output file. (It is not a
variable; it cannot be reassigned.)

flush(f)

Output istypically buffered before being
written. f | ush(f) flushes (actually
writes out) the buffersfor filef .

& nput

the standard input file. (It isnot avariable;
it cannot be reassigned.)

94 Copyright © 1996. Thomas W. Christopher

1/0

Table 30 Operations and functions on files

open(sl, s2)

opensthefile named by string s1 for ac-
cess in the mode described by string s2
and returnsafile object that represented it,
or failsif it cannot be opened. The modes
areindicated by letters:

e "a"—open in append mode for writ-
ing

» "b"—open for both reading and wri
ing

» "c"—create

e "r"—open for reading (default)

* "W'—open for writing

« "t"—translate line terminations into
linefeed characters (default)

* "u"—do not translate line termina-
tions to linefeed characters (use this
binary files)

* "p"—create a process to execute co
mand line s1 and attach it as a pipe
the current process. With "pr", the cu
rent process can read the standard
put of the created process; with "pw'

the lines the current process writes to

the file can be read by the created p
cess as its standard input.

for

m-
to
Ir-
DUt-

ro-

open(s,"pr")

forks a process which executes the con
mand line contained in strirggand returns
a file (bound to a pipe) from which the ot
put of the forked process may be read.
your system doesn’t have pipes, use
popen. i cninthe IPL.

N

It-

=

open(s, "pw')

forks a process which executes the con
mand line contained in strirggand returns
a file. Lines written to the file are piped &
standard to the forked process. If your s
tem doesn’t have pipes, usepen. i cn
in the IPL.

N

1S

open(sl)

Is equivalent tmpen(sl, "rt")

Copyright © 1996. Thomas W. Christopher95

Icon Programming Handbook

Table 30 Operations and functions on files

&out put

the standard output file. (It isnot avari-
able; it cannot be reassigned.)

pcl ose(file)

closesthepipeboundto fi | e, whichwas
opened by popen() .

i nk popen

popen(sl, s2)

equivalentto open(sl, "p"||s2)on
systems with pipes. On systems without
pipes, it will usethe syst en() function
and a temporary file to simulate a pipe.
However, the command given in s1 will
not run concurrently with the current pro-
cess. (If youusepopen(sl, "w'),you
must use pcl ose(fil e) toactualy
have the command s1 execute.)

i nk popen

read()

reads and returns as a string the next line
fromthe standard input file (& nput), but
failson end of file. r ead strips off the ter-
minating newline character fromthelineit
returns.

read(f)

reads and returns as a string the next line
fromthefile, f , but failson end of file.

r ead strips off the terminating newline
character from the line it returns.

reads()

reads and returns as a string the next char-
acter from the standard input file (& n-
put), but fails on end of file.

reads(f)

reads and returns as a string the next char-
acter fromthefile, f , but fails on end of
file.

reads(f,i)

reads and returns as astring the next i char-
actersfromthefile, f . Failson end of file.
Returnsfewer than i charactersif only that
many remain.

save(s)

saves the currently executing program as

filesandreturnsthe size of thefilecreated.
When executed, the program will resume
executing by returning fromthesave. Not
available on all systems.

96 Copyright © 1996. Thomas W. Christopher

1/0

Table 30 Operations and functions on files

seek(f,i)

seeksto positioni infilef sothat subse-
guent reads or writes will start at the i-th
byte. Failsif the seek cannot be done. Asin
Icon strings, the first bytein thefileis at
position 1, and the last byte isindicated by
position O.

stop(x1, x2,...)

writes out thevaluesx 1, x2, . . . left-to-
right to the error output, &er r out , and
exitswithanerror status. If any xi isafile,
subsequent output isto that file.

wher e(f)

returnsthecurrent file position, most likely
for use with seek later.

wite(xl,x2,...,xn)

writes out thevaluesx1, x2, . . . left-to-
right to the standard output, and follows
themwith alinetermination. If any xi isa
file, thefollowing values are written to that
file until the fileis changed again or the
end of the write procedure. If any xi is
neither afile nor a string and cannot be
converted to astring, wr i t e terminates
program execution with an error. Returns
Xn.

writes(xl,x2,...,xn)

writesout thevaluesx1, x2, . . . left-to-
right to the standard outpuit. It does not fol-
low themwith alinetermination. If any xi
isafile, thefollowing valuesarewritten to
that file until the fileis changed again or
the end of thewrite procedure. If any xi is
neither afile nor a string and cannot be
convertedto astring, wr i t es terminates
program execution with an error. Returns
Xn.

Copyright © 1996. Thomas W. Christopher97

Icon Programming Handbook

Table 30 Operations and functions on files

xdecode(f) reads, reconstructs, and returns the Icon
xdecode(f, p) data structure from file f that was previ-
oudly saved there by xencode. Files, co-ex-
pressions, and windows are decoded as
empty lists (except for files& nput ,
&out put ,and &er r out). Failsif thefile
isnot in xcode format or if it contains an
undeclared record.

If pisprovided, xdecode readsthelines by
calingp(f) ratherthanr ead(f) . See
xencode for an idea of what to use this
for.

| i nk xcode

xdecoden(x, f n) likexdecode, except that f n isthe name
of afile to be opened for input (with
open(fn)).

| i nk xcode

xencode(x, f) encodesand writesthe datastructurex into
xencode(x, f, p) filef . The data structure can be read back
inby xdecode. If parameter pis provid-
ed, itiscaled in place of write, i.e.
p(f,...) insteadofwite(f,...),
inwhich casef need not be afile, e.g.
xencode(x, L: =[], put)
will encode the data structure into alist, L.

| i nk xcode

xencoden(x, fn, opt) likexencode, except that f n isthe name
of afile to be opened for output (with
open(fn, opt)).Theoptions, opt,
defaultto" w'.

| i nk xcode

8.2 File names and paths

Full file namesin most systems are called "paths' since they represent a path
through the hierarchical directory system. E.g.

D:AIPL\PROCS\BASENAME.ICN

Moreover file names proper are usually divided into a base name and an exten-
sion (e.g. basename.icn). The Icon Program Library has several procedures to

o8 Copyright © 1996. Thomas W. Christopher

1/0

break out the components of afile name.

Table 31 File names and paths: |PL procedures.

basenane(pat h,
suf fix)

returns the base name of the fileindicated by
pat h. Thesuf f i x string isremoved from
theright. E.g.
basename("' D:\IPL\PROCS\BALQ.ICN",
"ICN")
returns "BALQ". Works for UNIX, MSDOS,
and MACs.

| i nk basenane

conponent s(s, sep)

conmponent s(s)

returns a list of the components of the path s,
wherethe components of the path are separated
by the character sep. The separator defaultsto
"[" which is appropriate for UNIX. E.g.
conponents("/a/b/c.d")
returns
[“/","a","b","c.d"]
link fil enane

dpat h('s)

returns the path for the file whose file nameis
s. If thefile isnot found in the current directo-
ry, al the directories whose paths are listed in
environment variable DPATH aretried, left to
right until the file can be successfully opened.
The paths in DPATH are separated from each
other with blanks; the directories within the
paths are separated by "/ " characters. (Iconon
MSDOS alows"/ " rather than "\ " in paths.)
Procedure dpat h returns

+ s, if the file is found in the current direct
ry.

e path || "/" || s ,ifthefileisfound
atpat h within DPATH.

link dpath or
|l i nk dopen

See alsopat hf i nd.

get pat hs(p1,
p2,...,pn)

generatepl, p2, ...,pn followed by all the
paths in thd>’ATH environment variable. This
will work for both UNIX and MSDOS, choos

ing the correct PATH syntax for each.

Copyright © 1996. Thomas W. Christopher99

Icon Programming Handbook

Table 31 File names and paths: |PL procedures.

pat hfind(s, p)

returns the path for the file whose file nameis
S. If thefileisnot found in the current directo-
ry, al the directories whose paths are listed in
string p areexamined, lefttoright. If p is&null
(i.e. not specified), the paths in environment
variable DPATH aretried, left to right until the
file can be successfully opened. The pathsinp
and DPATH are separated from each other with
blanks; the directories within the paths are sep-
arated by "/ " characters. (Icon on MSDOS a-
lows"/ " rather than "\ " in paths.) Procedure
dpat h returns

+ s, if the file is found in the current directo-
ry.

e path || "/" || s ,ifthefileisfound
atpat h within p or DPATH.

l'i nk pat hfind
See alsodpat h.

suffix(s, sep)

suf fix(s)

returns the lisf pr e, post] wherepr e is
the substring o$ up to the last occurrence of
sep andpost is the substring of to the right
of thesep. The separator defaults to"; ap-
propriate for both UNIX and MSDOS. If the
separatosep does not occusuf f i x returns
[s,&wull].

l[ink fil enane

100 Copyright © 1996. Thomas W. Christopher

1/0

Table 31 File names and paths: |PL procedures.

tail (s, sep)

tail (s)

returnsthelist [pr e, post] wherepre is
the substring of s up to the last occurrence of
sep and post isthesubstring of s totheright
of the separator sep. The separator defaultsto
"/ " which is appropriate for UNIX paths.
Since Icon allows MSDOS paths to be speci-
fied with "/" rather than "\", it can be used for
DOSif you translate the paths. There are a
number of special cases, t ai | returns

e ["",s] if sep does not occur i8.
e [sep,s[2:0]] ifsep==s[1].

e [s[1:j],s[]j+1:0]] if sep occurs at
positionj , 1<j <*s- 1.

e [s[1:-1], &ul |] if sep occurs as the
last character is.

link fil enane

t enpnane()

generates names for a temporary fike,a file
that does not appear to already exist. Unde
UNIX, the file name has the form

/tnp/i cont np. ddd
whereddd is a string of exactly three digits.
Under MS-DOS, the filename is either of th
forms:

temp\ i conOddd. t np
or

I con0ddd. t mp
The first form uses the directory bound to tH
environment variable TEMP. If TEMP is not
defined, then the second form is used, plac
the file in the current directory.

-

11}

e

ng

Because Icon cannot directly test whether a file

existst enpname returns the names of files

could not open for reading, which might mean

the file exists but is locked. In that case, you

will not be able to open it for writing either.
Thereforet enpnane is a generator so that
you can not open the first file generated, yo
should be able to open a subsequent one.

l'ink tenpnane

Copyright © 1996. Thomas W. ChristopherlOl

Icon Programming Handbook

8.3 Directories

There are several built-in Icon functions that mani pul ate the directory structure,
changing the current directory or removing or renaming files. Several more are
available in the Icon Program Library.

UNIX and DOS and probably most systems have environment variables. The
system maintains atable of names bound to string values. The variablesare used
to keep information about the user’s environment, such as terminal type and
search paths for programs. Icon gives access to environment variables viathe

get env function.

Table 32 Directory and environment procedures

chdir(s)

changes the current directory to that indicated by
string s. Failsif it cannot changeto that directory, per-
haps because it does not exist.

exi st s(nane)

succeedsif file named nane can be opened, other-
wisefails.

i nk exists

gdl (dir)

returnsalist of al the file namesin the directory in-
dicated by the string di r . Failsif therearenofilesin
the directory. Works with UNIX and MSDOS. In-
cludes the directory in the file names.

l'ink gdl 2

gdlrec(dir)

(recursivegdl) returnsalist of al thefilenamesinthe
directory indicated by the string di r and al itssub
directories. Failsif there are no filesin the directory.
Workswith UNIX and MSDOS. Includesthe directo-
ry in the file names.

i nk gdl 2

getenv(s)

Systemstypically provide environment variables: a
table mapping string names into string values.

get env(s) returnsthe string associated with envi-
ronment variable s, or failsif there is none such.

renove(s)

removes the file named s from the disk directory, or
failsif s cannot be removed.

renane(sl, s2)

renames the filewhose nameiss1 to have names?2.
Failsif it cannot renames1.

8.4 Character-based, interactive I/O

On some systems (not all) the Icon program has direct access to the terminal.
Y ou can use these functions to writeinteractive systems. They do not work that

102 Copyright © 1996. Thomas W. Christopher

1/0

well on UNIX systems, however, and may |leave the console in a strange mode
If 1con terminates abnormally.

Warning: These are not available in all versions of Icon. Moreover, win-
dows (Chapter 17 on page 151) make these functions obsol ete.

Table 33 Interactive character 1/O functions

getch() reads a character from the keyboard, but does not echo it.
Waits until a character is available.

get che() | readsacharacter from the keyboard and echoesit. Waits until
acharacter isavailable.

kbhit () succeedsif acharacter has been typed at the keyboard that has

not been read in yet. Use this to avoid waiting.

If you aretrying to use ANSI terminals, consult the IPL modules: ansi.icn,
iolib.icn, iscreen.icn, and itlib.icn.

Copyright © 1996. Thomas W. Christopher103

Icon Programming Handbook

104 Copyright © 1996. Thomas W. Christopher

Lists

Chapter 9 Lists

9.1

9.2

Creation: list(), [...]

Y ou can create lists using either the function | i st or the bracket notation as
shown in the following table.

Table 34 List creation

[] create an empty list

[el,e2,...,en] create alist of n elementsinitialized to the values of
the expressionsel,e2,....en.

list() create an empty list

l'ist(n) create alist of n elementsall initialized to &nul |

l'ist(n,val) c]rceateialist of nelementsall initialized to the value
of va

Be warned that when you create alist using the form
l'ist(n,val)

that val isevauated once beforethelistiscreated. If val yieldsamutable ob-
ject, all list elements share it. For example,

L:=list(2,1ist(2))
L[1][1]: =1

will resultin L[2][1] also equaling 1. If you actually want atwo-dimensional ar-
ray, use:

L:=list(2)
every IL:=list(2)

Positions subscripting and subranges
Y ou can use lists as one-dimensional arrays.

Thepositionsin alist arethe sameasin strings. The positionsare at the left end,
the right end, and between elements. If there are n elementsin the list, the left

Copyright © 1996. Thomas W. Christopher105

Icon Programming Handbook

end isnumbered 1 and -n, the right end is numbered n+1 and 0. The internal po-
sitions are numbered up from the left or down from the right. For example, [“F”,
22, 3.0, “g”"] would be numbered as shown in section Figure 27 on page 106.

Figure27 Character positions

[*F , 22 , 30 , “g]
1 2 3 4 5
4 -3 -2 -1 0

A single subscript
L[]

selects the element of the list to the immediate right of its position. The selected
element is a variableg., it can be assigned to.

A subrange
L[i:j]
L[i+:]]
L[i-:]]
specification selects a sequence of elements. The selected elementsaare

variable; a subrangsnnot be assigned to. The selected subrangepied as
a new list.

If you are indexing into a series of lists (and/or tables or strings), you can use
either

LEVTL] K]
or
L[i,), k]
9.3 Operators

The three unary operators that apply to all structured types apply, of course, to
lists—the size operator, *, the element generator, !, and the random selection, ?.
List concatenation uses three vertical bars, |||, rather than string concatenation'’s
two. The identity test operator, === (and its complement,~===), will succeed
(or fail) if the two operands are the same object so that any changes to one will
be seen through the other.

Table 35 List operators

L generates each element of the list as a variable

106 Copyright © 1996. Thomas W. Christopher

9.4

Lists

Table 35 List operators

* L returns the length of the list

? L returns arandomly selected element of the list asavariable
LI]|] M returns a new list equal to the concatenation of the two lists
L === succeeds if the two operands are the same list

L ~=== succeeds if the two operands are different lists

Example. Here's aclever way to randomize the order of elementsin alist x:
every I'x =1 72X

although it doesnot randomize well. Ward Cunningham and Ral ph E. Griswold,

in procedure shuffle in the Icon Program Library, use

every i := *x to 2 by -1 do
x[?21] = x[i]

Example. Here’'s how you can reverse aligt, L, in place:

every i:=1to *L/2 do L[i]:=:L[-1]

Example. Here's how you can rotate alist, L, by k places to the | eft:
L := L[k+21:0]|||L[1:k+1]
Stacks and queues

Listsmay be used as doubly ended queues: you caninsert or remove items from
either end. Y ou can use them as stacks or queues. The operations are pictured
in Figure 28 on page 108 and listed in Table 36.

Table 36 Lists as doubly ended queues

get (L) removes and returns the first element
of list L

pop(L) removes and returns the first element
of list L

pul I (L) removesand returnsthe last element of
list L

Copyright © 1996. Thomas W. ChristopherlO?

Icon Programming Handbook

t(L
push(L,x) put(L)
L 4/
pop(L) pull(L)
get(L)
Figure28 Sack and queue operationson a list.
Table 36 Lists as doubly ended queues
push(L, x) inserts x asthe new first element of list

L, moving the other elements up one
position, e.g., push([1, 2, 3], 4)
createsthe samelist as[4, 1, 2, 3] .

push(L, x1, x2, ..., Xxn) |sequwalentto{push(L x1);
push(L, x2);
push(L, xn)}. Theend resultisxn
on top of the stack.

put (L, x) inserts x as the new last element of list

L, leaving the other elementsin their
previous positions, e.g.,

put ([1, 2, 3], 4) createsthe same
listas[1, 2, 3, 4] .

put (L, x1, x2, ..., Xn) |sequwalentto{put(L x1);
put (L, x2); ... ;
put (L, xn)}.

Example. Here'show you can create alist, M, that is the reverse of another list,
L:

M =[
every push(M!L)

Example. Hereisthe primes sieve program using alist rather than astring or a
long integer to keep track of the sets of candidate primes and known composite
numbers. Compare to Figure 26 on page 87 and Figure 24 on page 75.

procedure main()

| ocal p,i,j,n

n: =1000

p:=list(n, 1)

every i:=2 to sqgrt(n) do

108 Copyright © 1996. Thomas W. Christopher

Lists

I f p[i]=1 then
every j:= 1+ ton by i do p[j]:=0
every i:=2 tondo if p[i]=1 then wite(i)
end

Example. Here is a program to write out Fibonacci numbers using a queue to
keep track of successive numbers. Compareto Figure 11 on page 50 and Figure
12 on page 51.

procedure main()
local f,i,n

n: =100000

f:=[1,1]

repeat {
I 2 =get (f)
i f 1>n then break
wite(i)

put (f,i+f[1])
end
9.5 Other list functions
Table 37 shows some further functions that apply to lists:

Table 37 Other built-in list functions

copy(L) creates anew list with the same contents aslist L.

I mage(L) "1 st_num(leng) " .A countisincremented eachtimea
list is created. numis the value of the count when thislist
was created. leng isthelist’s current length.

set (L) creates aset whose initial contents are the elements of the
list L. See Chapter 11 on page 117.

sort (L) creates anew list whose contents are the elementsof list L
in sorted order. Elements of the same type are grouped to-
gether. Lists, records, and other mutabl e objects are sorted
in their group by their order of creation.

sortf(L,i) | createsanew list whose contentsarethe elementsof list L
in sorted order. Recordsand listscontained inL with asize
of at least i are sorted by their ith field.

type(L) "list" ifLisalis.

Copyright © 1996. Thomas W. Christopherlog

Icon Programming Handbook

110 Copyright © 1996. Thomas W. Christopher

Tables

Chapter 10 Tables

10.1

10.2

Creation, lookup and assignment

A table lets you associate values with keys. Both the keys and values can be of
any type. Vaues may belooked up by the key they are associated with. A given
key can have at most one value in the table, but the same value may be associ-
ated with any number of keys.

You create atable by calling thet abl e function:
t:=table()

or
t: =t abl e(x)

Both create empty tables. They differ in what value you find when you look up
akey that is not defined.

You assign avalue, v, to akey, k, in the same fashion you would assign to an
element of alist:

t[k]:=v

Y ou look up the value associated with key k again using the same syntax as sub-
scripting:

t [K]

Havingassignedt [k] : =v,whenwelook upt [k] wegetv.Actually, we get
avariable containing the value v. We can assign another value to it.

Supposey isnot akey intablet . What happens when we look up y? That de-
pends on how we created thetable. If weusedt : =t abl e(),t[y] givesus
avariable containing &ul | . If weusedt : =t abl e(x),t[y] givesusa
variable containing the value x.

Initial value &null, \ and / idioms
When we create a table with anull initial value:
t:=table()

we can check for a key being defined using the \ or / unary operator. Form

Copyright © 1996. Thomas W. Christopherlll

Icon Programming Handbook

\ 't [x] will succeed if key x isdefined and fail if itisundefined. Form/ t [x]
Isjust the other way around.

Suppose you want to map keysinto lists. Y ou do not want to say
t:=table([])

because all new keys would be assigned the same list. What you wishto dois
create anew list whenever anew key is used:

[t[x]:=[]

For example, suppose you wish to make atable, t, that will map each character
that occursin astring, s, into alist of the positions at which it occurs. Y ou might
use the following code:

t:=table()

every i:=1to *s & x:=s[i] do {
ftix]:=[1
put (t[x],i)

Hereis atechnique (suggested by Todd Proebsting) to assign objects unique
IDs:

[t[x] = "tnmp" || *t
10.3 Other initial values

The most common use for creating a table with a non-null default valueisto
count the number of occurrences of items. Just make the default value zero, and
whenever you find an item, increment its count. For example, to count the num-
ber of occurrences of charactersin astring, s, you can use:

t:=tabl e(0)
every t[!ls]+: =1

10.4 Sort
Y ou create asorted list of the contents of atable using procedure sort. Thecall is
sort(t, k)
wherek is an integer from 1 to 4.
Y our options are:

» theitems can be sorted by the key or the value. If k is odd, Icon sorts by key.
If k is even, it sorts by value.

» the key/value pairs can come out in two elements sublists [...,[key,value],
[key,valuel],...], or they can alternate in the top level list [...,key, value, key,
value,...]. Ifkis 1 or 2, Icon gives you the two-item sublist form. If kis 3 or
4, it alternate the keys and values.

112 Copyright © 1996. Thomas W. Christopher

10.5

10.6

Tables

Y ou do not get to choose ascending or descending order. They come out in as-
cending order. Just go through the list backwards if you want descending order.

Here are two ways to count the occurrences of charactersin astring and write
out character counts:

Using the key/value pairs:

t:=tabl e(0)

every t[!ls]+: =1

every p:=!'sort(t,1) do
wite(imge(p[1]),"\t",p[2])

(Weusei nmage to print out a representation of non-printing characters.)
Using the alternating keys and val ues:

t:=tabl e(0)

every t[!ls]+: =1

L: = sort(t, 3)

while wite(inmge(get(L)),"\t",get(L))

Generating keys and values

Theunary ! operator will generate all the valuesin the table as variables. More
useful isthe function key.

key(t)
generates all the keysin the table.

If youwould liketo generate all the key/value pairsin atable, t, astwo-elements
lists, but you don’t want to sort the table, you could use a subexpression like:

every p:=[k:=key(t),t[Kk]]
Functions
Here are some functions that operate on tables:

Table 38 Functions that apply to tables

copy(T) returns acopy of table T
del ete(T, x) removes the key x and its value from table T.
I mage(T) returnsastring” t abl e_num(size) " Icon countsthe

number of tables created and remembersthe number of
each table. numisthe number of the table. sizeisthe
number of key/value pairsin the table.

insert(T,x,y) | sameasT[x]:=y

Copyright © 1996. Thomas W. Christopher113

Icon Programming Handbook

Table 38 Functions that apply to tables

key(T)

generates all the keysin thetable

menber (T, x)

succeedsif key x isintable T. Returns x if it succeeds.

sort(T)

sameassort (T, 1)

sort(T,i)

returns alist containing the keysand values from table
T. If ki istheith key and vi isits corresponding value,
theresulting listis:

[[k1,v1],[k2,v2],...[kn,vn]] sorted by keysif i=1
[[k1,v1],[k2,v2],...[kn,vn]] sorted by valuesif i=2
[k1,v1,k2,v2,..knvn] sorted by keysif i=3
[k1,v1,k2,v2,..knvn] sorted by valuesif i=4

table()

returns anew table. Attempting to look up akey notin
thetablereturns&nul | . For example, t [[]] will
yield &ul | becausethenew list[] can't bein the
table.

t abl e(x)

returns anew table. Attempting to look up akey notin
the table returns the value of x. For example, t [[]]
will yield thevalue of x becausethenew list[] cannot
beinthetable. The expressionx isevauated when the
tableis created, soif you executet : =t abl e([]),
all new keysyou look up will point to the same list.

type(T)

returns"t abl e"

10.7 Table operators

Theunary *, !, and ? operators apply to tables as they do to other structures:

Table 39 Table operators

* returns the size of the table

?t returns arandom value in the table as a variable.

It generates the valuesin the table, as variables. The function
key(t) isusually more useful.

10.8 Example: word count

Hereisaprogram to count the number of occurrences of wordsin theinput file.
It is composed of a procedure, wor d, and a main procedure.

114 Copyright © 1996. Thomas W. Christopher

Figure 29

Figure 30

Tables

The procedurewor d will generate lists of length two—the identifiers in the in-

put up paired with the numbers of the lines they occur in. (We will use the same
procedure in a cross-reference program later, which needs the line numbers.) It
uses the proceduradent s to generate identifiers in a string in Figure 23 on
page 75.

Word: Generating thewordsin afile

procedure word()

| ocal line,s,Ino,i,]
| no: =0
while line:=read() do {
| no+: =1
suspend [idents(line), Il no]
}
fail
end

The main procedure uses a table of words with a default value of zero to simpli-
fy incrementing counts. The words are sorted before being written out.

Count occurrences of wordsin the input

procedure main()

| ocal w, h

h := tabl e(0)

every w. =word() do {
hiw1]] +:=1

h := sort(h, 3)

while wite(get(h),"\t", get(h))
end

Copyright © 1996. Thomas W. ChristopherllS

Icon Programming Handbook

116 Copyright © 1996. Thomas W. Christopher

Chapter 11 Sets

11.1 Creation
A setisan unordered collection of objects without duplication.
You create a set by calling theset function:
set()
or
set (L)

If you do not pass a parameter, the set function creates an empty set. If you pass
italist, it will create aset containing all the elements of the list (omitting dupli-
cates).

11.2 Operators

The three unary operators that apply to all structured types apply, of course, to
sets—the size operator, *, the element generator, !, and the random selection, ?.
The identity test operator, === (and its complement,~===), will succeed (or
fail) if the two operands are the same object so that any changes to one will be
seen through the other.

The same set union (++), intersection (**), and difference (--) operators that ap-
ply to csets also apply to sets, but there is no complement operator.

Table 40 Set operators

operator precedence | means

* s 12 returns the size of the set (number of elements)

s 12 generates all the elements of the set

?'s 12 chooses a random element of the set (return it, but dp not
remove it from the set)

sl ** s2 9 intersection: creates a new set containing those elements
that are in both s1 and s2

sl ++ s2 8 union: creates a new set containing those elements that
are in either s1 or s2 or both

Copyright © 1996. Thomas W. Christopher117

Icon Programming Handbook

Table 40 Set operators

operator precedence | means

sl -- s2 8 difference: creates a new set containing those elements
that arein sl but not in s2

sl === s2 6 If s1 and s2 reference the same set, === succeeds return-
ing that set, but fails otherwise

sl ~===s2 6 iIf s1 and s2 reference different objects, ~=== succeeds
returning that s2, but fails otherwise

11.3 Functions

Elements may be added to setswith functioni nsert ,removedwithdel et e.
Function menber teststo seeif an element isamember of aset. Thefunctions
copy, i mage, andt ype, that apply to all types, of course, apply to sets as

well.

Table 41 Functions that apply to sets

copy(S) createsacopy of set S

del ete(S, x) deletes element x from set S. Returns set S.

I mage(S) returnsastring " set _num(size) " lcon counts the
number of sets created and remembers the number of
each set. numisthe number of the set. sizeisthe number
of membersin the set.

I nsert (S, x) inserts element x into set S (if it isnot already present).
Returns S.

menber (S, x) succeedsif x isamember of set S, fails otherwise. Re-
turns x if it succeeds.

set () creates an empty Set.

set (L) creates a set composed of the elements of list L.

sort(S) createsalist composed of the membersof set Sin sorted
order. Elements of the same type are grouped together.
Lists, records, and other mutable objects are sorted in
their group by their order of creation.

sortf(S,i) creates anew list whose contents are the elements of set
Sin sorted order. Records and lists contained in Swith a
size of at least i are sorted by their ith field.

type(S) returns” set "

118 Copyright © 1996. Thomas W. Christopher

11.4

11.5
11.5.1

Figure 31

11.5.2

Figure 32

Idiom: to-do sets

Oneuse of setsisto keep track of thingsthat haveto be processed or that already
have been processed. Even though you may discover several times that some-
thing should be processed, you still want to processit only once. If youtry keep-
ing ato-do list, you might put the same item on several times. With sets, you do
not have duplicates.

Examples using sets
Cross reference

Hereisaprogramto report theidentifiersthat occur in afile (the standard input)
and linesin which they occur. It keeps sets of line numbersso that alinewill be
reported at most once for an identifier. On output, the identifiers and line num-
bersare sorted. This code usesthe procedure word defined in Figure 29 on page
115.

Cross referencelisting

procedure main()

| ocal w, xr, | nos

xr = table()

every w. =word() do {
Ixr[w1]] := set()
insert(xr[w1]],w 2])

}

Xr = sort(xr,3)

while wites(get(xr),"\t") & I nos:=get(xr) do {
every wites(" ",!sort(lnos))
wite()

end

Cross reference without reserved words

Suppose we want the cross reference listing to omit Icon reserved words. We
can construct a set of those words and check to see if the word we have found
isin the set before putting it in the table.

Cross r eferences without reserved words

procedure main()
| ocal w, xr,lnos, reserved

xr = table()

reserved: =set (["gl obal ", "l ocal ", "static", "record",
"procedure","end","initial","re-

turn","fail", "suspend”,

IIifII,IIthenll1lle| Se”,”case”,”of II,
n ever.yll1 IIdOII1 Ilv\kli | ell, n untl | II,
"repeat", "break", "next",

IItOII1 n byll1 n not II])

Copyright © 1996. Thomas W. Christopherllg

Icon Programming Handbook

every w.=word() & not nenber(reserved,wW 1]) do {
Ixr[wW1]] := set()
insert(xr[w1]],wW 2])

}

Xr = sort(xr,3)

while wites(get(xr),"\t") & I nos:=get(xr) do {
every wites(" ",!sort(lnos))
wite()

end

11.5.3 Eight queens problem

The eight queens problem isto place eight queens on achess board (8x8) so that
no two attack each other. That means no two queens may be on the same col-
umn, row, or diagonal.

The work is done in procedure placeQueen(c) that places a queen in each posi-
tion of column c where it is not on an occupied row or diagonal and then calls
placeQueen(c+1) to place the next queen. When called with c>8, placeQueen
will call writeBoard to write out the configuration.

Sets are used to indicate which rows and diagonals are occupied. The trick for
representing diagonalsis as follows:

Number the rows from 1 to 8 from top to bottom and the columns from 1 to 8
left to right.

Notice that the square at row r and column c is on two diagonals, one going up
to the right and the other going down.

For every square on the diagonal going down to the right, the square’s row num-
ber, i, and column number, j, have the same difference: i-j = r-c.

For all squareson the diagonal going up to theright, the sum of the row number,
I, and column number, |, are the same: i+ = r+c.

So to check whether square (r,c) is attacked by some other queen, we check to
seeif risamember of set row, r-cisamember of set diffDiag, and r+cisamem-
ber of sumDiag.

Figure 33 The eight queens problem

gl obal numQueens, row, sunDiag, diffD ag, placenent

procedure main()
nunfueens: =8
row. =set ()

sunDi ag: =set ()
di ffD ag: =set ()
pl acenment : =[|

pl aceQueen(1)

120 Copyright © 1996. Thomas W. Christopher

11.54

end

procedure placeQueen(c)
i f c>nunfueens t hen
return witeBoard()

every r:=1 to nuntfueens &
not menber(row, r) &
not menber (sunDi ag, r+c) &
not menber (diffD ag,r-c) do {
I nsert(row,r)
I nsert (sunDi ag, r +c)
insert(diffDi ag,r-c)
put (pl acenent, r)
pl aceQueen(c+1)
del ete(row,r)
del et e(sunDi ag, r +c)
delete(diffDiag,r-c)
pul | (pl acenent,r)
}
return
end

procedure witeBoard()
| ocal board,c,r
board: =l i st (nunmQueens, repl ("_", numueens))
everyr: =1 to numueens &
c:=1 to nunfueens &
(r+c)®2=1 do
board[r][c]:="x"

every c:= 1 to numueens do {
r: =pl acenent|[c]
board[r][c]:="Q

}

every wite(!board)

wite()

return

end

Primes sieve using sets

Hereisthe primes sieve program again, this time using sets rather than bits,
strings, or lists. For the other versions, see Figure 26 on page 87 and Figure 24
on page 75.

procedure main()
| ocal p,i,j,n

n: =1000

p: =set ()

Copyright © 1996. Thomas W. Christopherl21

Icon Programming Handbook

every i:=2 to n do insert(p,i)
every i:=2 to sqrt(n) &

menber (p,i) &

j:=1+4 ton by i do delete(p,])
every i:=2 to n & nenber(p,i) do wite(i)
end

122 Copyright © 1996. Thomas W. Christopher

Records

Chapter 12 Records

12.1

12.2

12.3

12.4

12.5

Record declarations

Recordtypesinlconarelikestruct'sin C or recordsin Pascal. They aredeclared
at the same level as procedures and globals:

record recordNanme(fieldl, field2,..., fieldn)

Ther ecor dNane isthe name of the record type. It also becomes the name of
arecord constructor procedure. Thefieldsareidentifiersthat name the members
or fields of the record. Thelist of fields may be empty.

Creation

Y ou create an instance of arecord by calling its record constructor procedure
passing it initial valuesfor the fields, e.g.,

r := recordNane(el,e2,...,em

If you pass more values than there are fields, the rightmost arguments are ig-
nored. If you pass fewer, the remaining fields are initialized to &nul | .

Records are mutable values. They are accessed via pointers.
Field access r.f
The normal way to access a field uses the dot notation:

r.f

will select field f of recordr. Itisavariable; you can assignto it. More than one
record type can have the same field name; Icon selects the correct field at run
time. If the record does not have afield with that name, Icon reports an error at
run time.

Generating fields: ! (unary)

The unary exclamation point operator will generate the fields in arecord from
left to right. Thisis used for displaying the contents of a record in debugging
routines and for persistence, saving data structuresin string format on disk.

Subscripting records: r["f"] r[i]
Two other ways to access arecord'sfieldsareto subscript it asif it wereatable

Copyright © 1996. Thomas W. Christopher123

Icon Programming Handbook

or alist.

If you subscript a record with a string containing afield name, you will select
thefield of the record with that name. If the record does not have afield by that
name, the attempt to subscript fails, rather than causing a run-time error.

If you subscript arecord with an integer index, you get the field at that position.
12.6 Applying a procedure to the fields: ! (binary)

Y ou can use the binary operator ! to apply a procedureto arecord. Thefields
of the record are passed as parameters to the procedure.

Y ou can aso use the binary operator ! to apply the record constructor to alist.

If you wanted to convert the fieldsin arecord, r , to alist, you could use a pro-
cedure:

procedure returnArgs(L[])
return L
end

and call it with

returnArgs!r
12.7 Record operators

Hereisasummary of the operators that apply to records:

Table 42 Operators that apply to records

*or size (number of fields) or record r
or generate the fields of r from left to right as variables
?2r choose afield of r, randomly. (No, we don't have any idea

what we would use it for either.)

plr pass the fields of r to procedure p

rc! L createarecord by passing thefields of structure (probably list)
L to record constructor r c.

r. f select fieldf of record r (avariable)
r[1] select thei t h field of record r (avariable), or fail if thereis
no such field

r [s] select field of record r with the name given by string s (avari-
able), or fail if thereis no such field

124 Copyright © 1996. Thomas W. Christopher

Records

12.8 Record functions

There are three built-in functions that particularly apply to records:

Table 43 Functions that apply to records

copy(r) creates a new record with the type and contents of record r .

I mage(r) | returnsastring"t i (/)" wheretistherecordtype,i isthe
number of thisrecord, and | isthe length.

type(r) returns the type of record r asastring, e.g., if r was created
r:=R(...) thentype(r)=="R".

Copyright © 1996. Thomas W. Christopherl25

Icon Programming Handbook

126 Copyright © 1996. Thomas W. Christopher

Data Types and Conversions

Chapter 13 Data Types and Conversions

13.1

Variables and Values

In Icon, variables correspond to storage cells into which values can be assigned
and from which values can befetched. Expressions can yield variables, but vari-
ables are not quite "first class' objects. Here are some of therulesfor variables:

You can declare variables with global, local and static declarations.

Procedure declarations create global variables with the name of the proce-
dure which are initialized to the code for the procedure. You can assign an-
other value to the variable, losing access to the procedure.

Some keywords are variables. Some are not.

Subscripted lists, tables, and records are variables; however, a list subscript-
ed with a rangeg.g., L[i:]], is a value, not a variable.

A subscripted variable that contains a string is a variable; but it can only be
assigned a string.

A subscripted string value is a value.

A procedure can return or suspend yielding a variable, but a local or static
variable will have its value returned instead (locals will not be there any
more once the procedure has returned).

The unary operators ! and ? applied to lists, tables, or records yield variables.
They also return variables when applied to variables containing strings.

The unary / and \ operators preserve variables (i.e., if they're given a vari-
able, they return it), although they examine the values the variables contain.

The assignment operators require variables on the left hand side. They re-
turn their left hand sides as variables. The exchange operators require vari-
ables on both sides; they also return the left hand side variable.

The &, |, if and case control constructs preserve variables.

The unary dereference operatoyreturns the value of x. It is used to force
the value to be fetched immediately.

You cannot assign a variable to a variable and "go indirect through it" to ac-
cess the cell it points to.

Copyright © 1996. Thomas W. Christopher127

Icon Programming Handbook

13.2

* Avariable is left as a variable until its value is needed.

* Variables in a parameter list are left as variables until the procedure is
called, meaning that assignments to the variables later in the parameter list
will change the value passed. The same is true of variables within the brack-
eted list constructor, [el, e2, ..., en].

Table 44 Operationson variables

X returns the value of x. It is only significant when x is g
variable. Normally a variable is left as a variable until lits

value is needed. For example, variables in a parameter list
are left as variables until the procedure is called, meaning
that assignments to the variables later in the parameter list
will change the value passed. Thédereference) opera
tor will force the value to be fetched immediately.

vari abl e(s) | returns the variable or variable keyword whose name|is
contained in string s. It will only return a variable known
at the place of call—you can only access a local variable
within a procedure.

Operations On Arbitrary Types

Most Icon operators restrict the types of their operands, but a few work with any
type.

The assignment operators will assign any type of value to a variable, although
only a string can be assigned to a subscripted string variable. There are two va-
rieties of assignment operators, irreversible and reversible. The irreversible as-
signment operators, := and :=:, simply perform the assignment and are done
with it. The reversible assignments, <- and <->, will be resumed during back-
tracking and restore the value the variable(s) had before the assignment.

The object equal operators (=== and ~===) test two objects to see if they are
identical. Structured objects, lists, tables, records and such, may have identical
contents, but they are only equal if they are the same object.

Table 45 Operations on arbitrary types

operator precedence | means

X ===y 6 succeed if the values of x and y are the
same object, or if they are immutable ol
jects like numbers, strings, or csets, suc
ceed if they have the same contents.
Otherwise, fail.

128 Copyright © 1996. Thomas W. Christopher

13.3

Table 45 Operations on arbitrary types

Data Types and Conversions

operator

precedence

means

X ~===y

6

succeed if the values of x and y are differ-
ent mutable objects, or if they areimmuta-
ble objects like numbers, strings, or csets,
will succeed if they have different con-
tents. Otherwise, fail.

assign the valuey and return variable x.

exchangethevauesinthevariablesx and
y and return variable x.

assignthevaluey and return variable x. If
resumed during backtracking, restore the
value x had before the assignment.

exchangethevauesinthevariablesx and
y and return variable x. If resumed during
backtracking, restore the values x and y
had before the assignment.

yields the sequence generated by the left
operand followed by sequence generated
by the right. (It is not a true operator.)

for every element of the sequence generat-
ed by the left operand, it yields the se-
guence generated by the right.

copy(x)

copy(x) createsanew instance of any
mutable object x (list, table, set, record)
that has the same internal structure as x,
but is not equal (~===) to x. Immutable
objects like numbers, strings, csets are left
asis.

I mage(x)

I mage(x) createsalegible string that in
some sense describes object x. If X isa
string or a cset, the image has quotes
around it and hasitsillegible characters
represented by escape sequences.

type(x)

t ype(x) returnsastring that represents
the type of object x.

Built-in conversions

The built-in data conversions in Icon involve integer, real, string, and cset val-
ues. In a context where one of those types isrequired, Icon will attempt to con-
vert avalue of any of the other typesto that type. However, some of the

Copyright © 1996. Thomas W. Christopher129

Icon Programming Handbook

13.4

conversions go through anintermediate type. The conversionsare showninFig-
ure 34.

Figure34 Built-in data conversions.
r——— - - - — — — = A
| .
| |
. -
I'| integer |
| numeric |
| | —
| | <
| # f | string cset
| |
| |
: real :
| | >
| B
- - - |

Integers and reals are converted directly to each other and directly to string. To
convert an integer or real to acset, it isfirst converted to a string and then the
charactersinitsstring representation are converted to acset. That isthe meaning
of the arrows going from integer and real to cset going through the box labeled
string.

Conversions from string to integer or real first go into either numeric represen-

tation, meaning the converted string could be integer or real—it all depends on
which type of value the string represents. If either type would do, the number is
left as which ever type the string represented. If a specific type is required, then
an integer is converted to real, or real to integer, as required.

A string is converted into a cset by making a set of all the characters in the
string. A cset is converted to a string by simply listing the characters in it in or-
der. A cset can be converted to an integer or real if its sorted characters form a
valid numeric representation.

Translating structures to strings

The Icon Program Library contains two proceduess;ode anddecode, to
translate an arbitrary data structure into a string and to translate the string back
into the data structure. In the graph of the data structure multiple paths to the
same object are permitted, cycles are permitted. The structure will be recreated
when the string is converted back.These procedures are contained augle

130 Copyright © 1996. Thomas W. Christopher

Data Types and Conversions

obj . i cn and are described in Table 46.

Table 46 Encoding and decoding data structures.

decode(x)

translates a string produced by encode back into a
data structure isomorphic to the one encoded.

| i nk codeobj

encode(x)

transl ates the data structure accessible from x into
astring and returns that string. Any contained
files, functions, procedures, co-expressions, and
windows cannot be properly contained in astring,
so don't try to include them.

| i nk codeobj

xdecode(f)
xdecode(f, p)

reads, reconstructs, and returns the Icon data S
ture from filef that was previously saved there
xencode. Files, co-expressions, and windows
decoded as empty lists (except for fi@snput ,
&out put , and&er r out). Fails if the file is not
in xcode format or if it contains an undeclared
record.

If p is providedxdecode reads the lines calling
p(f) ratherthamead(f).Seexencode foran
idea of what to use this for.

| i nk xcode

truc-

Py
are

xencode(x, f)
xencode(x, f, p)

encodes and writes the data structuneto file f .
The data structure can be read back in by
xdecode. If parameter p is provided, it is calle
in place ofwrite,i.e.p(f,...) instead of
wite(f,...),inwhich casé need not be a
file, e.q.

xencode(x, L: =[], put)
will encode the data structure into a list,

| i nk xcode

o

Procedure encode produces strings without control charactersor newlinesin
them, so the strings can safely be written out to filesand read back in. However,
If the datastructures are large, you would do better to write them and read them
back with procedures xencode and xdecode from filexcode. i cn.

Proceduresxencode and xdecode can also be used, asshownin thetable, to
linearize data structures into alist of strings.

Copyright © 1996. Thomas W. Christopherl3l

Icon Programming Handbook

132 Copyright © 1996. Thomas W. Christopher

Debugging

Chapter 14 Debugging

141

Basic debugging
Y ou will do your debugging of Icon programs at run-time.

Because Icon is atypeless language, the trandator cannot check that you are
matching operand types properly for operators. Mismatched types will cause
your most common run-time error. Fortunately, when Icon detects an error, it
will stop execution and inform you of the problem. It will givethefileand line
number where the error occurred, atrace-back of all the active procedure calls,
and an explanation of what was wrong.

For problems with your agorithms, however, there isless help. Thereisno
"lcon Programming Environment” to allow you to single-step your program or
put in breakpoints and watch expressions. Y ou debug your programs either by
turning on tracing or by inserting output commands in the code.

Tracing iscontrolled by the variable keyword &t r ace. When &t r ace isnon-
zero, procedure calls, returns, suspends and resumes, result in aline being writ-
ten to the standard error output. Thevalueof &t r ace isdecremented each time
alineiswritten, soif you set it to a positive value, it will only trace until that
value goesto zero. You can assign avalueto &t r ace to start tracing. You can
stop the tracing by assigning & race : = 0. If youassign & r ace: =- 1,
tracing will continue indefinitely.

You caninitialize the value of &t r ace before running the program by assign-
ing a value to the environment variable TRACE, e.g.,

set TRACE=1000
or
setenv TRACE 1000

If you need to examine the state of the computation at some point within the pro-
gram, the easiest output command to add isacall tothedi spl ay() function.
It will show the active procedures and the contents of variables.

If you want to tailor your own debugging messages, you probably want to use
functionsi mage(x) and name(x) to get strings that represent values and
variables.

Copyright © 1996. Thomas W. Christopher133

Icon Programming Handbook

Here are some functions and keywords you may find useful.

Table 47 Debugging functions and keywords

di splay(i,f)

writesto filef the names of thei most recently called
active procedures, their local variables, and the glo-
bal variables. Used for debugging.

di splay(i)

writesto &er r out the names of thei most recently
called active procedures, their local variables, and the
global variables. Used for debugging.

di spl ay()

writesto &er r out the namesof all the active proce-
dures, their local variables, and the global variables.
Used for debugging.

&dunp

avariable. If &dunp isnonzero on program termina-
tion, Icon calsdi spl ay() beforeterminating.

&err or

controls whether errors cause the program to termi-
nate. When zero, an error causes program termination
with an error message. If nonzero, an error causes a
failureand &er r or isdecremented. The error mes-
sage that would have been reported isinstead as-
signed to keywords &er r or nunber ,
&errortext,and&errorval ue.

errorclear()

clearstheindication that an error has occurred. Ref-
erences to the keywords &er r or nunber ,
&errortext,and&errorval ue fal until the
next error has occurred.

&err or nunber

the number of an error.

&errortext

the text explaining the error.

&errorval ue

the offending value (e.g., whose type didn’t match).
Accessto &er r or val ue will fail if thereisno of-
fending value associated with the error.

&errout the standard error output file.

&ile the file name of the file this code was compiled from.

&host the name of the computer system the programis run-
ning on.

I mage(x) returns a legible representation of object x. For de-
tails, see Section 6.6, String editing and conversion
functions, on page 65.

&l evel is the number of levels of active procedures calls.

&l ine is the number of the line this keyword occurs on.

134 Copyright © 1996. Thomas W. Christopher

Debugging

Table 47 Debugging functions and keywords

name(x)

just ad mage(x) gives a legible indication of a va

ue,nane(x) gives a legible indication of a variabl

If the variablex, is a keyword or declared variable

name gives its name as a character string. If it is
component of a structureane(x) gives the struc-
ture type (i st , record,...) and the way the compg
nent is usually accessed, e.¢., 8t [2] ",
"rec.f"

LAY

a

&pr ogname

the file name of the executing program. It's a varia
You can assign another string to it if you wish.

ple.

runerr (i, x)

cause the program to terminate with a standard r
time error message for error numbeand offending
objectx.

irn,

ails,

&t race when not equal to zero, every procedure call, rety
suspension, or resumption writes a messageto
rout and decrementt r ace.

type(x) returns the type of the value x as a string. For det
see section 6.6 on page 65.

&version IS a string representation of the version of Icon tha

executing.

itis

The current numbers and messages for Icon’s run-time errors are shown in Ta-
ble 48 on page 135.

Table 48 Run-time errors

number | message

101 integer expected or out of range
102 numeric expected

103 string expected

104 cset expected

105 file expected

106 procedure or integer expected
107 record expected

108 list expected

109 string or file expected

110 string or list expected

Copyright © 1996. Thomas W. Christopherl35

Icon Programming Handbook

Table 48 Run-time errors

number | message

111 variable expected

112 invalid type to size operation

113 invalid type to random operation

114 invalid type to subscript operation

115 structure expected (e.g. list, set, or table)
116 invalid type to element generator

117 missing main procedure

118 Co-expression expected

119 set expected

120 two csets or two sets expected

121 function not supported

122 set or table expected

123 invalid type

124 table expected

125 list, record, or set expected

126 list or record expected

127 Improper event monitoring setup

140 window expected

141 program terminated by window manager
142 attempt to read/write on closed window
143 malformed event queue

144 window system error

145 bad window attribute

146 incorrect number of arguments to drawing function
201 division by zero

202 taking the remainder of division by zero
203 integer overflow

136 Copyright © 1996. Thomas W. Christopher

Debugging

Table 48 Run-time errors

number | message

204 real overflow, underflow, or division by zero
205 invalid value

206 negative first argument to real exponentiation
207 invalid field name

208 second and third argument to map of unequal length
209 invalid second argument to open

210 non-ascending arguments to detab/entab

211 by value equal to zero

212 attempt to read file not open for reading

213 attempt to write file not open for writing

214 Input/output error

215 attempt to refresh &main

216 external function not found

301 evaluation stack overflow

302 memory violation

303 inadequate space for evaluation stack

304 inadequate spacein qualifier list

305 inadequate space for static allocation

306 Inadequate space in string region

307 Inadequate space in block region

308 system stack overflow in co-expression

316 interpreter stack too large

318 co-expression stack too large

401 Co-expressions not implemented

402 program not compiled with debugging option
500 program malfunction

600 vidget usage error

Copyright © 1996. Thomas W. Christopher137

Icon Programming Handbook

14.2 Monitoring storage

Because Icon automatically reclaims storage (called "garbage collection"), the
amounts of storage used by programs can cause significant differencesin per-
formance. | con provides some functions and keywords to alow you to see what
the storage requirements of your program are.

There are three sections of storage:
1. the static section composed of blocks that are never moved,
2. thestring region filled with characters,

3. theblock region, composed of blocks of storage that are allocated for
most structured data types.

Active storage in both the string and block region is compressed to one end of
their area when they are garbage collected.

The garbage collector only runs when storage in some region is exhausted or
when you call the function collect. Since the program does not run concurrently
with the garbage collector, you may notice your program pausing every so of-
ten. Do not use Icon for real-time systems.

If you are holding onto a lot of storage in some region—that is, if it is all acces-
sible all the time—then the garbage collector may run frequently collecting only

a little space each time. If your program is about to run out of space, it may take
a very long time to actually do so.

If you suspect you are having problems with storage, you can use the function
and keywords shown in the following table to find out.

Table 49 Storage management

collect() forces a garbage collection.

col lect (i) forces a garbage collection of region i, where i spec-
ifies the region

0—no specific region
1—static region
2—string region
3—block region

collect(i,j) forces a garbage collection of region i, where i spec-
ifies the region as shown fool | ect (i) above.
Fails if there are not at least | bytes available in the
region after collection.

138 Copyright © 1996. Thomas W. Christopher

Table 49 Storage management

Debugging

&col | ecti ons

generates four values:
» the number of garbage collections

» the number caused by attempts to allocate in
static region

» the number caused by attempts to allocate in
string region

» the number caused by attempts to allocate in
block region.

The first value may be larger than the sum of th
other three due to calls twl | ect ().

the

the

the

&r egi ons

generates the current sizes of the three regions:
ic, string, and block. The size of the static regior
may not mean anything: Icon might allocate mo
space from the system when needed.

stat-

=

re

&st or age

generates the amount of space currently in use i
three regions: static, string, and block. Again, th
space occupied in the static region may not me;
anything.

1 the

Copyright © 1996. Thomas W. Christopherl39

Icon Programming Handbook

140 Copyright © 1996. Thomas W. Christopher

Writing systems

Chapter 15 Writing systems

15.1 Translator commands
15.1.1 Translator and compiler

Most people use the Icon translator and interpreter system as shown at the |eft
in Figure 35. On some systems an |con compiler isavailable. The compiler can

Figure 35 Icon translator and compiler.

Icon Qi;ram Icon qfram

preprocessor preprocessor
\ P
translator Icon compiler
q \
ucode C code
\ \
linker C compiler

%
\

interpreter

executable code

produce a faster-running Icon program, but the compiler itself is slow and re-
quires agreat deal of memory to run. The compiler generates a C program
which then must be compiled by a C compiler.

The command line to translate an Icon program is

I cont options and file nanes

Copyright © 1996. Thomas W. Christopher141

Icon Programming Handbook

The command line to compile an Icon program is
I conc options and file nanes

The beta version of Icon translator with graphics facilities for Microsoft Win-
dowsiscalledw cont .

15.1.2 Translating multiple files

It's best to divide large programs into a collection of modules. Each moduleis
placed in adifferent file and the files are combined to produce the overall pro-
gram.

In Icon, you can compile multiple files together by the command
icont f1 f2 ... fn

wheref1 f2 ... fnarethenamesof thefiles. Theexecutablefile produced
takesits namefrom f 1.

After you have some of the moduleswell debugged, you do not need to compile
them over again each time. Y ou can compile afileto be linked in later by the
command

icont -¢c f2

which will produceapair of files, f 2. ul and f 2. u2.Y outhenincludethose
filesin acompilation by referring to file f 2. u:

icont f1 f2.u ... fn

Y ou can have the precompiled filesincluded automatically, without listing them
on the command line, by listing them in amodul e that usesthem. Usethel i nk
declaration inside your icon program:

link f2,f3,...,fn

whereeach f i iseither anlconidentifier that isthe sameasafile name (without
the".u") or astring that isafile name (probably because of some non-identifier
characters). For example:

link array, "hash-tbl"

The | i nk declaration causes Icon to include the compiled (ucode, . u1 and

. u2) filesnamed. It will search for them through several directories. First it
searches the current directory. If they are not found there, it reads the environ-
ment variable IPATH. IPATH should be set to alist of directory paths separated
by blanks which Icon will investigate in order to find the named files.

15.1.3 Command-line arguments

Commandsto thetrandator are shown in Table 50. These vary somewhat by the
version of Icon, so you will need to consult the documentation on your version

142 Copyright © 1996. Thomas W. Christopher

if these don’t work.

Writing systems

Table 50 . Command line flags for icont.

i cont command.

-C translate the files into ucode files, not all the way to
an interpretable or executable file. (Or, in the case of
the compiler, to code in the C programming lan-
guage.)

-C cc in the Icon compiler, use the C compiler located |at
CC.

-e file redirect error output tbi | e rather than to the stan-
dard error output.

-f opts enable the features specified by the option characters
in the stringopts.

» a—all features.

* d—enable debugging features.

» e—enable error conversion.

* |l—enable large integer arithmetic.

» n—keep track of source code line numbers and
filenames.

* s—enable string invocation.

These features are disabled in the compiler in order

to achieve greater execution speed. String invoga-

tion is also now disabled in the translator to decrease

the size of the translated files. Instead of specifying

icont -fs ...,itis bettertoinclude

I nvocabl e al | in your program.

-n opts in the Icon compiler, disable the specific optimiza-

tions given by characters apts.

* a—all

» c—control flow optimizations other than switch
statements.

* e—expand operations in-line

* s—switch statements.

* t—type inference.

-0 filenane name the translated Icon program enane, rath-
er than taking its name from the first file listed in the

-p ccarg in the compiler, pass argumeatarg to the C com-
piler.

-r path use the run-time system locatedath.

-S

suppress informative messages from the translqtor

Copyright © 1996. Thomas W. Christopherl43

Icon Programming Handbook

Table 50 . Command line flags for icont.

-t

initialize & r ace to- 1, that is, run the program
with tracing turned on.

-u issue warnings for undeclared identifiersused in the
program.
-V controls the verbosity of the translator’'s output:

-v 0 suppresses messages the same as -s
-v 1 is the default

-v 2 reports the sizes of sections of the icode
-v 3 lists globals that are being discarded.

15.2 Global name space

Unfortunately, Icon has a single global name space. There are no variables or
procedures private to files. This means you may have to deal with name colli-
sions: using the same name in more than one module.

Probably the safest way to deal with thisis to choose a name for each module
and combine it with the local name using an underscore. For example, use
set H gh_Space or Space_set H gh for theset Hi gh procedure provid-

ed in the Space module.

15.3 The preprocessor

Icon provides an inferior version of the C processor to aid in program develop-
ment. The C preprocessor processes commands that begin with a#-sign and a
directive name, but since # introduces commentsin Icon, Icon beginsits prepro-
cessor directives with $. The directives are given in Table 51.

Table 51 Preprocessor directives.

$defi ne nane text # cnmt

definesname. Whenname is encountered subse-
qguently in the program, it will be replaced widxt.
The replacement text itself is scanned for replac
ments, although Icon suppresses further replace
ments ofname within text to avoid infinite loops.
Thetext may be empty.

The# cmmt is a comment, which may, of course
be omitted.

file

$error text

causes a fatal compile-time error displayieg.
You would use it withirsi f def 's when you have

determined the required options are not availabl

w

144 Copyright © 1996. Thomas W. Christopher

Table 51 Preprocessor directives.

Writing systems

$i f def nane
...lines-if-defined

$el se
...lines-if-not-defined
$endi f

if nane isdefined, includethe / i nes-i f - de-
fi ned, otherwiseincludethe/ i nes-i f - not -
defined. The$el seandl i nes-i f-not -

def i ned areoptional.

$i f ndef nane
...lines-if-not-defined
$el se
...lines-if-defined
$endi f

if nane isdefined, includethe / i nes-i f - de-
fi ned, otherwiseincludethe/ i nes-i f - not -
defined. The$el seandlines-if-de-

f i ned are optional. These directives may be nest-
ed. They must be balanced, i.e. occur asagroup, in

order, in the same file—they cannot extend into pr

out of an included file.

$i nclude fil enane

includes the contents of the specified file in place
the$i ncl ude directive. Iffi | enane is not an
Icon identifier, it must be quoted.

$line n
$line n fil enane

of

tells the translator to consider this line to be numper

n. This differs from C, where the line command te
the compiler to consider the following line to be
numbem. If filename is supplied, the subsequent
lines are considered to be in the specified file. If

fi | enaneis not an Icon identifier, it must be quot-

ed.

$undef nane

undefine, i.e. remove the definition oime.

154

Environment Inquiries

There are a number of functions and keywords that provide information to the
Icon program. They allow an Icon program to find out about the filesit was
compiled from, the features of the version of Icon running, the host machine,
the time, and the values of environment variables in the operating system.

Table 52 Environment inquiries

&cl ock returns a string giving the current time of day
"hh: mm ss", in 24 hour form.

&dat e returns the current date in the fotmyyy/
mi dd"” .

&dat el i ne returns the current date and time of day as|a
string.

&f eat ures generates strings indicating the features of this
version of Icon.

Copyright © 1996. Thomas W. Christopher145

lIs

Icon Programming Handbook

Table 52 Environment inquiries

function()

generates the names of Icon’s built-in func-
tions.

&ile

contains the name of the file the current line
was compiled from.

getenv(s)

returns the string associated with the environ-
ment variable named s. The environment vari-
ables are string-valued variables maintained
by the operating system (typically, the shell
program).

&host

contains a string identifying the computer sys-
tem Iconis running on.

&l i ne

contains the number of the current linein the
file it was compiled from.

&pr ogname

contains the file name of the executing pro-
gram.

systen(s)

executes the string s as a system (shell) com-
mand and returnsthe exit status (an integer) by
calling the C function syst em Itisnot avail-
ableon al systems, but it is available on
UNIX®,

& ine

returns the number of milliseconds since the
program started executing.

&ver si on

contains a string identifying the version of
Icon that is executing.

146 Copyright © 1996. Thomas W. Christopher

Co-expressions

Chapter 16 Co-expressions

16.1

16.2

16.3

What are co-expressions?

Y ou can understand I con backtracking by imagining asingle "point of control”
moving left to right through an expression and then backtracking right to left.

Co-expressions are away to have more than one point of control. Icon moves
only one point of control at atime, that of the current co-expression, but it can
resume moving the others at any time.

Warning. Co-expressions are not present in all Icon implementations.
Creation: create e
Y ou create a co-expression by the form:

C := create e

whichyields aco-expression ready to evaluate expression e. The co-expression
saves a copy of thelocal variables of the procedure that executed the create.
Whenever expression e refersto any local variable of the surrounding proce-
dure, it isreferring to its own copy. Assignments to local variables will not be
seen by the procedure that created the co-expression.

Activating a co-expression

Suppose we created a co-expression
C := create e

Y ou hand control to a co-expression, ¢, by using the form:
@c

The co-expression will be alowed to execute until it passes control to another
Co-expression.

Typically, expression e in the co-expression ¢ will execute until it generates a
value. Thevalueisthen passed back asthe value of the @ operation. When en-
tered again, expression e will backtrack to generate another value. When e fi-
nally fails, the @ will fail.

When control ismoving forward, the operation @ will activate, resume execut-
ing, the co-expression. It will not activate ¢ during backtracking. For example

Copyright © 1996. Thomas W. Christopher147

Icon Programming Handbook

16.4

16.5

16.6

c:=create 1 to 3
while i:=@ do wites(i)
d:=create 1 to 3
every i:=@ do wites(i)

writes out
1231

Three times the whi | e loop reactivates the co-expression, ¢, and it generates
anew integer, and the fourth time it fails, leaving the loop. Theevery, how-
ever, activatesthe co-expression, d, generating thevalue 1. After writing out the
1, it backs into @d, which does not reactivate the co-expression, and control
falls out of the loop.

States of a co-expression

Only one co-expression will be executing at atime. Any others will be waiting
to execute in any of three states:

It may be waiting to begin execution, immediately following acr eat e or are-
fresh, ~.

It may have generated a value and be waiting to backtrack into its expression.

It may have explicitly given control to another co-expression with an @ opera-
tor and be waiting to have control passed back to it.

Getting the number of values generated
The size operator,
*C
will tell how many values a co-expression, ¢, has generated.
Refreshed copies

Y ou can create arefreshed copy of a co-expression using the unary * operator.
A co-expression savesacopy of itsinitial state, that is, thelocal variables of the
procedure that executed the create and the address of the code it is to execute.

Noc

creates anew co-expression in theinitial state c wasin. It will start executing

from the beginning. Figure 36 shows the internal data structure for co-expres-

sions. The co-expression proper has a stack and a pointer to a shared block of

storage with a snapshot of the original contents of the surrounding procedure’s
local variables. When a refreshed copy of a co-expression is created, a new
stack is allocated and initialized from the snapshot.

148 Copyright © 1996. Thomas W. Christopher

Co-expressions

Figure 36 Retreshed copies ot co-expressions.
C_____ gyl CO-eXpressionc'’s After
stack \ C := create ...
Original variables | d := "c;
d > co-expression d’'s
stack
16.7 Symmetric activation: val @ c
A co-expression may explicitly pass control to another waiting co-expression
no matter what state it isin. The general form for passing control isthe binary
@ operator.
e @c
will passthe value of e to the co-expression c. If ¢ iswaiting at an @operator,
the value passed to it will become the value of ¢’s @operation. If ¢ iswaiting
either to begin execution or to backtrack, it is unableto receivethe value, so the
valueisignored. The unary operation, @ ¢, meansthesameas&nul | @c.
16.8 Co-expression keywords
There are three keywords that are bound to co-expressions. They are shown in
Table 53.
Table 53 Co-expression keywords.
¤t the currently executing co-expression.
&mai n the co-expression that initially began executing
the program.
&source the co-expression that activated the current co-ex-
pression.
169 p{..}

A procedure call,
p{ el, e2, ..., en}
IS equivalent to

p([create el, create e2, ..., create en])

Copyright © 1996. Thomas W. Christopher149

Icon Programming Handbook

150 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Chapter 17 Windows and Graphics

171

War ning: Much of thismaterial was tested with a betaversion of Icon for Win-
dows 3.1. It may change. Windows and graphics are arelatively new feature of
Icon. They are not availablein all versions or implementations of 1con, and they
may be subject to change. They are implemented under X-windows.

Windows

Y ou can create windowsin Icon to use for interaction with auser at a video ter-
minal. Windows are objects of datatypew ndow. Y ou create a window by
opening it. A window has a number of attributes, some of which you can set to
new values. Y ou can read and write text through windows. Y ou can draw two-
dimensional figuresin windows. Y ou can receive events, e.g. mouse clicks,
through windows.

Some of the graphics functions are implemented internally within the Icon run-
time system. Others are implemented in Icon and must be linked in from the
graphics section of the lcon Program Library. If you are using windows, include

l'i nk graphics
declaration in your program.

Y ou create and open awindow with the function WOpen. WOpen returnsawin-
dow object. The parametersto WOpen are strings that assign valuesto window
attributes. Each attribute assignment is a string of the form
"attribute_name=value". Typically the minimum attributes that would be spec-
ified when opening awindow would be the width and height of the window, al-
though a window defaults to enough space for twelve lines of eighty columns
of text.

Table 54 Common window attributes for WOpen.

" bg=color" selects the background color for the window. The default
Is" bg=whi te". Colorsarediscussed in Section 17.6
on page 168.

" f g=color" selects the foreground color for the window. The default
Is" bg=bl ack". Colorsare discussed in Section 17.6
on page 168.

"hei ght =h" height of the window in pixels. Defaults to enough for 12
lines of text.

Copyright © 1996. Thomas W. Christopher151

Icon Programming Handbook

Table 54 Common window attributes for WOpen.

" pos=x, y" equivalent to! posx=x"," posy=y". Defaults to
"pos=0, 0", i.e. the window is drawn at the upper left
corner of the screen.

"size=w, h" | equivalent td'w dt h=w"," hei ght =h"

"W dt h=w" width of the window in pixels. Defaults to enough for
columns of text.

The functions that operate on windows take the window object astheir first pa-
rameter. However, the window parameter is optional. If it is omitted, the func-
tion uses the value of the keyword & ndow.

Keyword & ndowinitially hasthe value &nul | . If & ndow has the value
&nul | ,then WOpenwill assignit the newly created window. If you only intend
to use one window, you never need to use the window parameter to the graphics

functions.

Procedure WClose will close awindow. WDone will wait until a Q or q char-
acter is typed in the window and then close it—Q being an Icon convention for

"quit.”

Table 55 Functions to open and close windows.

WALt ri b(
Wsi,s2,...)

sets and queries the attributes of a window. Ea
string is eithef nane" or" name=val ue"

where name is the name of an attribute and vald
a string representation of a value for that attribu
First WAttrib will perform assignments for all thé
" name=val ue" parameters, then it will genera
the values for all the attributes named, left to rig

Generates the values of the attributes. Fails on
attempt to set an invalidg, f g, f ont , orpat -

t er n. Gives a run-time error on any other inval
value or name.

" posx=x" the horizontal position of the left edge of the window o¢n
the screen.

" posy=y" the vertical position of the top edge of the window on the
screen.

Ch

eis
te.

nY

(5]
jht.

an

id

WCl ose(W

closes the window W. The window is removed
from the screen. ClosirgM ndowsets&w ndow
to&nul | .

Wbone(W

waits until aQ (or q) is typed in the window, then
closes it.

152 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Table 55 Functions to open and close windows.

WOpen(opens a new window with the values of its at-
sl,s2,...,sn) tributes given by the strings. Each string is of the
same form as a value assignmeritWi t ri b:
" name=val ue" where name is the name of ai
attribute and value is a string representation of
value for that attribute. Returns the window. As;1
signs the window té& M ndowif & ndowis pre-
viously &nul | .

[

Y ou can set attributes after a window has been opened by calling WA(ttrib and
specifying the new attribute assignments asits parameters. Y ou can aso exam-
ine the current values of awindows attributes by calling WAttrib with just one
string parameter giving the name of the attribute; WA(ttrib will return the current
value of that attribute.

17.2 Graphics
17.2.1 Co-ordinates and angles

The coordinates are in pixels from the upper left of the window. The upper left
has the x,y coordinates (0,0). The x coordinate increases to the right; they co-
ordinate increases downwards. This differs from the convention of graphing
mathematical functions where the y coordinate would grow upwards.

If you wish to have the (0,0) point be somewhere el se than the upper left, you
can set the window attributes dx and dy. Attribute dx will be automatically add-
ed to any x coordinate to calculate the window-rel ative coordinate, and dy will
be added to the y coordinate. For example,

WOpen("si ze=200, 200", "dx=100", "dy=100")

will open a200 by 200 pixel window, but position (0,0) will appear to bein the
center of it.

Anglesare measured in radians. When used as parametersto functions, angle O
Is horizontal to the right and angles increase clockwise from there.

17.3 Lines
17.3.1 Line-drawing functions

Icon provides a collection of functionsto draw points, lines, curves, and closed
figuresin awindow. The functions take aflat series of x and y coordinatesin

the window. By "flat" we mean that a point is not represented by alist of two
coordinates, nor aline by alist of two points, but rather the x and y coordinates

of the endpoints of a line are all at the top level in the function’s parameter list.
You will probably find that you will represent points and lines internally as
structured objects and then have to concatenate a list of the coordinates to pass
to the drawing functions using theuncti on ! |i st form of invocation.

Copyright © 1996. Thomas W. Christopher153

Icon Programming Handbook

Table 56 providesalist of the basic graphics functions Remember, the window
parameter isoptional: it defaults to the value of keyword & ndow. The basic

attributes used in line drawing are shown in Table 57..

Table 56 Basic line-drawing functions.

dip(Wx,y,w h)

Set a clipping rectangle with a cor-
ner at position (x,y), and width w
and height h. The default w and h
values are to the right and bottom
edges of the window. Subsequent
drawing outside the bounds will
have no effect. When called without
the (x,y) parameters, clipping is
turned off and the entire canvas can
be written.

Returns the window, W.

Dr awAr c(

DrawAr c(W x, vy, w, h)

W X,y,w h, theta, phi)

Draws an ellipse in the rectangle of
width w and height h and acorner at
position (x,y). If thetaand phi are
given, it draws an arc of the ellipse
starting at angle thetaand extending
for angle phi.

Returns the window, W.

DrawCi rcl e(

DrawCircl e(Wx,y,r)

WX, vy, r,theta, phi)

Draws a circle with center at posi-
tion (x,y) and radiusr. If theta and
phi are given, it draws an arc of a
circle starting at angle theta and ex-
tending for angle phi.

Returns the window, W.

Dr awCur ve(
Wx1,y1,x2,y2,

..., XNn,yn)

Draws a smoothed curve from
(x1,y1) to (xn,yn) passing through
the intermediate pointsin order. If
xn=x1 and yn=y1, then the curve
will be closed and smoothed
through point (x1,y1) as well.

Returns the window, W.

Dr awLi ne(
Wx1,y1,x2,y2,

..., XNn,yn)

Draws a connected sequence of
straight lines. A straight lineis
drawnfrom point (x1,y1) to (x2,y2),
then aline from (x2,y2) to (x3,y3),
and so on to (xn,yn).

Returns the window, W.

154 Copyright © 1996. Thomas W. Christopher

Table 56 Basic line-drawing functions.

Windows and Graphics

Dr awPoi nt (
Wx1,yl,x2,y2,...,Xn,yn)

Draws apoint at each position (X,y)
given.

Returns the window, W.

Dr awPol ygon(
Wx1,yl,x2,y2,...,Xn,yn)

Equivalent to DrawLinewith afina
line segment back to (x1,y1).

Returns the window, W.

Dr awRect angl e(
W x1,y1l, x2,y2)

Draws the rectangle with opposite
corners (x,y) and (x+w,y+h). Pa-
rametersw and h default to theright
and bottom edges of the window.

Returns the window, W.

Dr awSegnent (
Wx1,yl,x2,y2,...,Xn,yn)

Similar to DrawLine, except it
draws disconnected line segments
between pairs of points: (x1,yl) to
(x2,y2), then (x3,y3) to (x4,y4), etc.

Returns the window, W.

EraseArea(W x, y, w, h)

Fillsthe rectangle with opposite
corners (x,y) and (x+w,y+h) with
the background color. Parametersw
and h default to theright and bottom
edges of the window.

Returns the window, W.

Table 57 Attributes for line drawing.

" dx=num" integer to be added to each x parameter passed to
agraphics function to determine the actual pixel
position in the window.

" dy=num" integer to be added to each y parameter passed to
agraphics function to determine the actual pixel
position in the window.

Copyright © 1996. Thomas W. Christopherl55

Icon Programming Handbook

Table 57 Attributes for line drawing.

"linestyl e=s" string describing the style of thelinesto be drawn.
The options differ based on the underlying graph-
ics system. For X-windows, the options are sol -
I d,dashed, andstri ped. Thedashed lines
havegaps. Thest ri ped linesaredashed with
their gaps filled with the background color.

In the beta version of I1con for Windows, the op-
tionsaredashed, dot t ed, sol i d, dash-
dot t ed, anddashdot dot t ed. Style

stri pedistreated asdashed.

The default styleissol i d.

"1i new dt h=num" number specifying the width of the lines drawn.

17.3.2 Examples of line drawings

Example. The differencesin some of the line-drawing functions are shown in
Figure 38 on page 157. The codeto draw the linesis shown in Figure 37 on page
156. Notice that DrawCurve is much like DrawLine, except that the lines are
curved and the junctions between the line segments are smoothed. When theini-
tial point isequal to the last point in DrawCurve, the curve is also smoothed
through that point.

Figure 37 Drawing lines.

i nk graphics

procedure main()

WOpen("si ze=400, 350") | stop("can’'t open w n-

dow")

L: =[]

every i:=10 to 50 by 20 & j:=10 to 30 by 20 do {
put (L,j,i)

DrawLi ne! L
Drawst ring(L[7] +10, L[8], " DrawLi ne")
every L[2 to *L by 2] +:=60
Dr awSegnent ! L
DrawsStri ng(L[7] +10, L[8], " Dr awSegnent ")
every L[2 to *L by 2] +:=60
Dr awPol ygon! L
DrawsStri ng(L[7] +10, L[8], " Dr awPol ygon")
every L[2 to *L by 2] +:=60
Dr awCur ve! L
Drawst ri ng(L[7] +10, L[8], " DrawCurve")
every L[2 to *L by 2] +:=60
DrawCurve! (L ||| [L[1],L[2]])
DrawString(L[7]+10, L[8], "DrawCurve, wth

156 Copyright © 1996. Thomas W. Christopher

Figure 38

Figure 39

Figure 40

Windows and Graphics

| oop- back")
Witelmage("lines.gif")

WWDone()
end

DrawLine
DrawSegment
. . D Pol
Lines drawn by Figure 37 raretygen

DrawCurve

DrawCurve, with loop-back

P NN DI T T INN

Example. Figure 39 on page 157 shows several closed figures. The diamond
was drawn with a DrawPolygon. Inthe top figure, the outer curve was drawn by
DrawCircle. The curve between them was drawn by DrawCurve. The bottom
figureisthe result of DrawRectangle and DrawArc with the same parameters.

Closed figures.

Example. The spiral in Figure 41 on page 158 was drawn by the codein Figure

40 on page 157. It isdone by drawing arcs of concentric circles while varying
the angles theta and phi.

Draw a spiral.

l'i nk graphics
procedure main()
| ocal r

Copyright © 1996. Thomas W. Christopher157

Icon Programming Handbook

WOpen("si ze=400, 400") | stop("can’'t open w ndow")

WALt ri b("dx=200", "dy=200")

every r :=5to 180 by 2 do
DrawCircle(0,0,r,dtor(r),2*dtor(r))

Witel mage(&w ndow, "spiral .gif", -200,
- 200, 400, 400)

Wbone()

end

i W "H
L |

Figure4l Spiral—the effects of angles.

| i
|||!|||||||||||| |||||||!'!'!'!'|'!'.|'!'![!'!'!'!'" |||||||||[|||||||[|) '!'|'!'!'!'|J|'|'|'|'|f|'|'|'|'|'|'|'|J|'|'|]"'!"J‘
' i

Example. Figure 42 on page 158 explores more precisely what the two angles
mean in DrawCircle and DrawArc. The top figure explores circles and the bot-
tom, ellipsesdrawn with DrawArc.Linesat anglesthetaand theta+phi aredrawn
from the center of both figures. The top shows acircle and an arc of adightly

smaller concentric circle. The angles clearly mark the beginning and ending po-
sitions of the arc. For the bottom figure, an arc isdrawn in arectangle, but the
angles from the center of the rectangle do not correspond to the beginning and
ending of the arc.

Figure42 Anglesin DrawCircle and DrawArc.

158 Copyright © 1996. Thomas W. Christopher

17.4
17.4.1

Filled areas
Basic area-filling functions.

Windows and Graphics

Y ou can draw severa kinds of areas and have them filled-in with the back-
ground color or apattern. The relevant functions are given in Table 58. Several
examples of filled figures are shown in Figure 43

Table 58 Functions for filling areas.

EraseArea(W x, y, w, h)

Fills the rectangle with opposite cor-
ners (x,y) and (x+w,y+h) with the
background color. Parametersw and
h default to the right and bottom edg-
es of the window.

FillArc(WXx,y,w, h)

fillsan ellipse within the rectangul ar
areawhich hasone corner at position
(x,y) and width w and height h.

FillArc(
W X,y,w h, theta, phi)

fillsawedge of an ellipse within the
rectangular area which has one cor-
ner at position (x,y) and width w and
height h. The wedge subtendsthe arc
that would be drawn by
DrawArc(W x, y, w, h, t het a,

phi).

FillCrcle(Wx,y,r)

fillsacircle with center (x,y) and ra
diusr.

FillGrcle(
WX, vy, r,theta, phi)

fillsawedge of acircle with center
(x,y) and radius r. The wedge starts
at angle theta and extends for angle
phi.

Fi | | Pol ygon(fillsthe contained areas in the poly-
Wx1,yl,x2,y2,...,xn,yn) | gontha would be drawn by
Dr awPol ygon(W x1,yl,
X2,¥2, ...,Xn,yn)
Fill Rectangl e(Wx,y,w, h) fillsthe rectangle with a corner at
(x,y) and width w and height h.

Pattern(Ws)

establishes the pattern to be used for
Fill... functioncals. The pat-
tern specification smay beoneof the
predefined names shown in Figure
44 on page 161, or it may be abi-lev-
el image as described in Section
17.4.4 on page 161.

Copyright © 1996. Thomas W. Christopher159

Icon Programming Handbook

Figure43 Somefilled figures

17.4.2 Fill style
Y ou choose what style fill to use with the window attributefi | | styl e:
* sol i d—the area is filled with the foreground color.

* t extured—the areais filled with the fill pattern. All pixels in the area are
overwritten with pixels from the pattern.

* masked—the foreground colors in the pattern overwrite the pixels in the
area. The background color in the pattern leaves the pixels in the area un-
changed.

So if you are going to use patterns, you must setithé st yl e attribute to
something other thasol i d.

17.4.3 Patterns

The actual pattern used is specified by window attripatet er n. You will
typically set the attribute by calling the procedure

Pat t er n(W spec)

The pattern specification can be one of the predefined pattern names shown in
Figure 44 or it can be a bi-level image.

160 Copyright © 1996. Thomas W. Christopher

Figure 44

17.4.4

Windows and Graphics

. black \Q diagonal

505

aaaaaaaa

arkgray %%Egrid

horizental

Fill patterns.

ightgray acales

erylight trellis

|

white vertical

frrararad
checkers P waves
ety

é

Bi-level images

A bi-level image is arectangular bit pattern where 1 specifies the foreground
color and O specifies the background color. A bi-level imageisitself specified
by a string of the form:

" width, #hexdata"

Thew dt h isan integer specifying how wide the pattern is, in pixels. The
hexdat a is comprised of hexadecimal digits specifying four bits apiece. The
four bits specify up to four horizontally contiguous pixels, the least-significant
bit specifying the leftmost.

While the number of pixels horizontally is specified by width, the number ver-
tically isdeduced from the number of hexadecimal digits provided. The pattern
isfilled in by taking the hexadecimal digitsleft to right tofill arow, thenif there
are any more hexadecimal digits, starting the next row of pixels with the next
hex digit. If widthisnot evenly divisible by four, some bits specified by the last
hex digit in arow will be ignored.

When used as afill, the bi-level imageistiled tofill thearearequired. If you are
just going to fill arectangular area exactly the size of the bi-level image, you
can use the function Drawlmage:

Drawm mage(W x, Yy, S)

which will place the bi-level image on the screen with its upper left corner at
position (x,y). When s hasthe form

" width, #hexdata"

itiswrittenast ext ur ed: the 1 bitsare written asthe foreground color and the
0 bits are written as the background color. If s hastheform

" width, ~hexdata"

(i.e. ~ issubstituted for #, but otherwise the specificationisidentical) it iswrit-

tenasmasked: the 1's are written as foreground color but the 0’'s are not writ-

ten, leaving those pixels unmodified.

Copyright © 1996. Thomas W. Christopher161

Icon Programming Handbook

A full description of Drawlmageis given in Table 67 on page 174.

17.4.5 Fill attributes

Window attributes related to filling areas are shown in Table 59

Table 59 Fill-related attributes.

n bg:SII

string s specifies the background color.

"dr awop=s"

string s specifies either "copy"” or "reverse”. With
"copy" the new pixelsreplacethe existing pixels. With
"reverse”, the new pixels will combine with the exist-
ing pixelsin an exclusive-or fashion converting fore-
ground-colored pixels into background-colored and
viceversa

n f g:SII

string s specifies the foreground color.

“fillstyle=s"

string s specifies whether a pattern isto be used when
drawing filled figures, and if so, how. The options are
"solid","textured",and" masked". If

"sol i d" isspecified, figuresare filled with the fore-
ground color. If "t ext ur ed" isspecified, both the
foreground and background colors of the pattern are
used. If " masked" , only theforeground colors of the
pattern are written; pixels corresponding to the back-
ground colors are |eft unchanged.

Thedefaultis" sol i d".

"pattern=s" string s specifiesthefill pattern to be used, either a pat-
tern name (Figure 44) or a bi-level image (section
17.4.4).

"reverse=s" string s iseither " on" or " of f " . When changed

from"on" to"of f" or"of f" to" on", thevalues
of bg and f g are swapped.

17.4.6 Example of filled areas

Figure 45 shows a collection of beveled figures created by writing filled rectan-
glesand circles. The code producing thisfigureisshownin Figure 46. Thetrick
Isto write lighter and darker copies of the figures offset slightly up to the left

and down to the right, and then the figure itself in the background color in the

center.

Figure46 Codefor beveled figures.

162 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Figure45 Beveled figures.

l'i nk graphics
procedure main()
local r,flip
WOpen(" si ze=225, 400", "bg=very light gray") |
stop("can’t open w ndow')

bevrect angl e(10, 10, 100, 100, - 1)
bevr ect angl e(35, 35, 50, 50, 1)

bevcircl e(160, 160, 50, - 1)
bevcircl e(160, 160, 25, 1)

flip:=-1
every r:=90 to 5 by -5 do {
bevcircl e(100, 300, r,flip)

flip:=-flip
}
Witel mage("bevfig.gif")
WDone()
end

procedure bevrectangle(x,y,w, h,d)
| ocal ol df g, nw, se

ol df g: =Fg()

nw. ="whi te"

se: ="grey"

I f d<O then {nw =:se; d:=-d}
W =d

h-:=d

Fg(nw)

Fi || Rect angl e(x,y,w, h)
Fg(se)

X+: =d

Copyright © 1996. Thomas W. Christopher163

Icon Programming Handbook

y+:=d

Fill Rectangl e(x,y,w, h)

Fa(Bg())

Fill Rect angl e(x,y, wd, h-d)

Fg(ol df g)
return
end

procedure bevcircle(x,y,r,d)

| ocal
ol df g: =Fg()
r.=r-d

nw. ="whi te"
se: ="grey"

I f d<O0 then {nw =:se;

Fg(nw)

ol df g, nw, se

d: =-d}

FillGrcle(x-d,y-d,r)

Fg(se)

Fill Grcle(x+d,y+d,r)

Fa(Bg())

FillGrcle(x,y,r)

Fg(ol df g)
return
end

175 Text

Y ou can treat awindow as avideo terminal using functions\WV i t e(),
WV ites(),WRead(),andWReads() forwrite(),wites(),
read(),andr eads() . Thetext-related functions are shown in Table 60.

Table 60 Text-related window functions.

DrawStri ng(Wx,y, s)

writesthe string s starting at position (x,y)
in window Wwithout modifying the text cur-
sor.

Font (Ws) setsthe font in window Wo that specified by
string s, or failsif it cannot be done.
Got oRC(Wr, C) setsthetext cursor inwindow Wtorow r and

column c. Got oRC(W sets the row and
columnto 1,1.

Got oXY(W X, y)

sets the text cursor position in window Wto
position (x,y). Got oXY(W setsthe posi-
tionto (0,0).

Text W dt h(W s)

returns the number of pixels of width that
string s would requireif written in window
wW

164 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Table 60 Text-related window functions.

VWRead(W

reads alinetyped into window Win the man-
ner of r ead. Displays the text cursor and
echoes the characters typed if window at-
tributescur sor and echo alow it.

WReads(W i)

readsi characters (default one) typed into
window Winthemanner of r eads. Displays
the text cursor and echoes the characters
typed if window attributescur sor and
echo alow it.

VWAV i te(
Ws1,s2,...,sn)

writesthestringss1,s2, .., sn inwindow W
in the manner of wr i t e—followed by mov-
ing the cursor to the beginning of the nexi
line, scrolling if required.

VWAV i tes(
Ws1,s2,...,sn)

writes the strings1,s2, ..,sn in windowW
in the manner ofw i t es—scrolling if re-
quired by any n characters written.

A window is by default drawn large enough for twelve lines of eighty columns

of text.

Thereisatext cursor that starts at the upper left corner of the window. The cur-
sor ismoved astext iswritten or read, and if it would go off the bottom, thewin-

dow scralls.

The text cursor is not visible by default. Y ou must set the window attribute
cur sor to on to seethe cursor (and set it back to of f to make the cursor in-

visible), see Table 61. E.g.

WAt tri b(W"cursor=on")
WAt tri b(W"cursor=off")

The cursor is the underscore character, does not blink, and is only displayed if
attribute cur sor isset on and Icon iswaiting input WRead or WReads.

(Good luck finding it.)

Table 61 Window attributes related to text.

"ascent" the number of pixels the current font extends aboye
the base line. Read only.

"descent” the number of pixels the current font extends below
the base line. Read only.

" col =nunt column of the text cursor (in characters).

"cursor=s" controls the visibility of the text cursor in the screen:

"on" or"of f","of f" by default.

Copyright © 1996. Thomas W. Christopher165

Icon Programming Handbook

Table 61 Window attributes related to text.

"echo=s" flag controlling whether characters typed to WRead
and WReads are displayed on the screen: " on™ or
"of f","on" by default.

"font=s" current text font.

"fhei ght" height of the current text font, top to bottom. Read
only.

"fw dth" width of the current text font. Read only.

"1 eadi ng=nun? | the number of pixels between successive lines of text.

"row=nuni row of the text cursor (vertical position in characters).
" x=numn horizontal position of the text cursor (in pixels).
"y=numni vertical position of the text cursor (in pixels).

The cursor may be moved explicitly to a screen position with
Got oRC(W r ow, col)

where the optional parameter Wspecifies the window, r ow specifies the row,
and col specifiesthe column, or

Got oXY(W X, y)

where the optional parameter Wspecifies the window, and x and y specify the
pixel position. Noticethat r owand col specify the distance down and across,
whilex andy specify the position across and down.

Rather than writing

Got oXY(W X, y)
VWNVites(Wtext)

you can use
DrawStri ng(Wx,y, text)

which will not change the cursor position. Dr awSt r i ng is probably more ap-
propriate for writing captions on graphics.

When you are reading text in awindow, the characters the user typeswill only
be displayed on the screen if window attribute echo issettoon. If echo is
of f , the characters will not be written. By default, characters will be echoed.

Y ou can select the font that will be displayed in awindow. Y ou can change the
font by calling function

Font ('s)

166 Copyright © 1996. Thomas W. Christopher

Figure 47

Windows and Graphics

which will set the font to that specified by the string s.
Fonts are specified by strings of the form
family,style,size

where family gives the family name of the font, style gives such characteristics
asbold, italic, or bold,italic, and size specifiesthe size of thefont. The styleand
Size parts of the specification are optional.

There are four built-in font families, shown in Table 62. These, in four styles
and several sizes, are shown in Figure 47, along with a the non-portable family
Times.

Table 62 Built-in font families

monospaced proportionally
spaced
sans-serif | nobno sans
serif typewiter serif

WoNno moxo MORD Moo
typewriter fypewrifer typewriter fypewrdter
ZANS 53Ns sang sans
il an¥ =l 2ol
Times Times Times Tines
mono, 10 mowe mono sews
typewriter, 10 #Zipesrsfar typewriter Zypesriier
zans, 10 saws sans saes
i3 2 ol ¥
Times, 10 Fwes Times Faeer
Fonts. mono,12 e nm> meao :))
typewriter, 12 #wwesrifar typewriter Zypesriter
sang, 12 sans 5ans sy
367 12 o nerd
Times, 12 Tiwes Times Tivasr
mono,ld mozo MONO moRo
typewriter, 14 fypewrifer typewriter fypewrdifer
zans,14 sans sans sans
il 14 and w2l
Times,14 Times Times Tines
mono, 18 mono mono mono
tvpewriter,l% typewriter typewrlter fypewriter
5ans, 18 sans sans sans
serif, 18 seri senl soml

Times, 18 Times Times Times

Windows have anumber of attributesrelated to the currently activefont, see Ta-
ble 61. Attributesf hei ght andf wi dt h give the maximum height and width
of the current font. The a proportionally-spaced font, some characters may re-
quire less space.

Characters extend up- and down-wardsfrom aline Attributeascent givesthe
number of pixels upwards the font extends; descent the number of pixels
downwards. Attribute | eadi ng specifies the distance between successive
lines of text. Only thel eadi ng attribute can be assigned new values; the oth-
ersarefixed for afont. Figure 48 shows some of the font attributes. The two sol-

Copyright © 1996. Thomas W. Christopher167

Icon Programming Handbook

id lines are the base-lines of text | eadi ng pixels apart. The two dashed lines
aredrawn at the first baseline minusascent and plusdescent pixels.

Figure 48 Font attributes.] &1 o

Example. The code in Figure 49 displays amoving sign. Thetrick isto repeat-
edly write the message over one pixd to the left each time. The message text
must end in ablank to clean out the rightmost pixels. A certain amount of com-
plexity in the code is the result of GotoXY refusing to set the cursor position
outside the window: we established a clipping region within the window and
shifted the message one character at atime.

Figure 49 Moving sign.

l'i nk graphics
procedure mai n()
| ocal nsg, fontw dth
WOpen(" si ze=300, 40") |
stop("can’t open w ndow')
Font (" Ti mesRoman, bol d, 24") |
stop("can’'t set font")
fontwidth: =WAttrib("fw dth")
Cip(fontw dth, 1,
WAt tri b("w dth")-2*fontw dth,
WAt tri b("height"))

repeat {

msg : = "the quick brown fox junps_
over the lazy dog "

msg :=repl (" ",

WAt trib("wdth")/ Text Wdth(" ")+2)|| nsg
while *nmsg>0 do {
every Got oXY(

fontw dth-(1 to TextWdth(nsg[1])),

30) do {

VWAV i tes(nsQ)

lrsg: =nmsg[2: 0]
}
}

end
17.6 Colors

17.6.1 Color specifications and names

Colors are specified in the red-green-blue system by giving the intensities of
each of these components. Each intensity is specified in 16 bits: The minimum

168 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

intensity iszero; the maximum is65535. The colors are specified by stringsgiv-
ing either adecimal or a hexadecimal specification of theintensitiesred, green,
and blue in one of the forms:

"R G B

"#rgb"

"#rrggbb"
"#rrrgggbbb"
"#rrrrggggbbbb"

where R, G, and B are decimal numbersin the range 0-65535 and r, g, and b
represent hexadecimal digits.

Rather than using the numeric color specification, you can specify colors using
names of the form:

lightness saturation modifier hue

There are fourteen built-in huesthat can bereferred to by name; they are shown

in Table 63.

Table 63 The built-in hues.

hue decimal specification

bl ack 0,0,0

bl ue 0, 0, 65535

br own 32767, 16383,0
cyan 0, 65535, 65535
grey 32767, 32767, 32767
green 0, 65535, 0

magent a 65535, 0, 65535

or ange 65535, 16383, 0

pi nk 65535, 32767, 40959
purpl e 32767, 0, 65535

red 65535, 0,0

vi ol et 49151, 32767, 65535
white 65535, 65535, 65535
yel | ow 65535, 65535, 0

The grammar in Figure 50 shows the full form of acolor name. Only the hueis
required.The modifier iseither ahue or ahue with the suffix -ish written in cor-

Copyright © 1996. Thomas W. Christopherl69

Icon Programming Handbook

Figure 50

rect English (e.g. red becomes reddish). If the color specifies two hues, the ac-
tual hueishalf way between them. If it specifies ahuish hue, then the actual hue
isthree-quarters of the way from thefirst to the second. The saturation pal e is
asynonymforvery |ight, anddeep, forvery dar k. The elements of
acolor name are separated by either blanks or hyphens (separ at or).

Grammar for color names.

col orName = |ightness_opt saturation_opt
nodi fier_opt hue.
| i ght ness_opt = lightness separator |

| ightness = very separator light | pale
| 1ight
| medi um
| dark
| very separator dark | deep

saturation_opt = saturation separator |
saturation = weak

| noderate
| strong
| vivid
nodi fier_opt = nodifier separator |
nodi fier = hue | huish .
hue = bl ack| blue| brown
| cyan| gray| green
| magenta| orange| pink
| purple| red| violet
| white| yell ow
hui sh= bl acki sh| bl ui sh| browni sh
| cyanish| grayish| greenish
| magent ai sh| orangi sh| pinkish
| purplish| reddish| violetish
| whitish| yellow sh
separator =" " | "-"

An example of how lightness and saturation modify a color is shown in Table
64.

Table 64 Lightness and saturation.

color name specification

very |light weak red

57343, 51881, 51881

very |light noderate red

60073, 49151, 49151

very light strong red

62804, 46420, 46420

170 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Table 64 Lightness and saturation.

color name specification

very light vivid red 65535, 43689, 43689
| i ght weak red 49151, 38228, 38228
l'i ght noderate red 54612, 32767, 32767
light strong red 60073, 27306, 27306
light vivid red 65535, 21845, 21845
medi um weak red 40959, 24575, 24575
medi um noder ate red 49151, 16383, 16383
medi um strong red 57343, 8191, 8191
medi um vivid red 65535, 0,0

dark weak red 27306, 16383, 16383
dark noderate red 32767, 10922, 10922
dark strong red 38228, 5461, 5461
dark vivid red 43690, 0,0

very dark weak red 13653, 8191, 8191
very dark noderate red 16383, 5461, 5461
very dark strong red 19114, 2730, 2730
very dark vivid red 21845,0,0

17.6.2 Color correction

Asexplained in Foley, et al.1, CRTs and film are non-linear, and the intensity,
[, isrelated to the level applied to the pixel, V, by the formula

I = kv

where K and y (gamma) are constants.

Icon allowsyou to select agamma correction to be used when | con passes color
specifications to the underlying graphics system, with 1.0 giving no color cor-
rection and larger values giving less saturated, lighter colors.

L Foley, James D., Andries van Dam, Steven K. Feiner, and John F. Huges, Computer Graphics. Princi-
ples and Practice, Second Edition, Addison Wesley, 1990, p565.

Copyright © 1996. Thomas W. Christopherl?l

Icon Programming Handbook

17.6.3

Palettes, images

Palettesallow youto refer to colors or shadesof gray with single characters. The
Size of & cset, 256 in current Icon implementations, limits the number of colors
or graytones possible. Y ou can use pal ettes instead of bit mapsin the Drawim-
age function to draw rectangular, colored or grayscale images in the window.

Palettes are predefined; you don’t get to create your own. The grayscale palettes
are namedg2","g3","g4", ..., g64" . The color palettes are nanfecil” ,
n C2II , n C3II , n C4” , n C5” , a.ndll C6II .

The function Drawlmage (see 17.4.4 on page 161) can draw a color or grayscale
image as follows:

Drawm mage(W x, y, "w dt h, pal ette, chars")

will fill the rectangular area in windowwith a corner at positiorxfy) and
width wi at h. The colors specified associated with the charactetss in pal-
ettepal et t e are used to fill in the pixels from left to right, top to bottom.

The characters in gray palege are the first characters in the striﬁg

"0123456789ABCDEFGHI JKLMNOPQRSTUVWNKYZ _
abcdef ghi j kIl mopqgr st uvwxyz{}"

The first character is black, the last character is white, and the characters in be-
tween represent uniformly spaced shades of gray.

The color palette cl is rather arbitrary in its design. It is shown in Table 65
which is based on a table in Appendix F of Icon Project manual IPDTBS.

table was created by constructing color names from the column headings con-
catenated with the row headings and asking function PaletteColor what charac-
ter is closest to that color in the c1 palette. The gray areas were omitted from the
table in IPD255 as not being part of the designed palette.

Table 65 Color paletteC 1.

very dark | medium|light |very weak
dar k l'i ght
bl ack 0 0 0 2 4 0
gray 1 2 3 4 5 3
white 2 4 6 6 6 6
br own ! p ? c 9 2

2 Notewe are usi ng I con continuation conventions: an underscore asthe last character of aline continues
astring with the first nonwhitespace character of the next line. The underscore is not part of the string.

3 Clinton L. Jeffery, Gregg M. Townsend, Ralph E. Griswold, Graphics Facilities for the |con Program-
ming Language, Version 9.0, Icon Project, University of Arizona, IPD255, July, 1994.

172 Copyright © 1996. Thomas W. Christopher

Table 65 Color paletteC 1.

Windows and Graphics

red n N A # @
or ange 0 o B $ %
red-yel | ow p P c &

yel | ow q Q D

yel | ow r E

green

green s S F f +
green-cyan t T G g * /
cyan u 0] H h

cyan- bl ue v Y | i < >
bl ue w w J i ()
bl ue- X X K k []
magent a

purpl e X X K k []
magent a y L | { }
magent a- z z M m A =
red

vi ol et X K 8 [6 4
pi nk N A 7 A 6 4

Thecolor paettes™ c2" through" c6" ar e t he uniformcolor palates. The
basicideaisthat palette c n givesyou n levels of intensity of each of the colors
red, green, and blue. Y ou can form n3 colors by combining intensities of their
red, green, and blue components.

The first n® characters of palette c n select the colors. Theintensity levelsin the
c n palette are numbered from O through n-1. If P isthe string of charactersin
the palette and r, g, and b are the intensity levels for red, green, and blue, then
the color with intensitiesr,g,b is selected by character

P[r*n*n+g*n+b+1]

Every color with equal intensities of red, green, and blueis a shade of gray, but
they are too few to give good rendering of grayscale images, so additional
shades of gray were added. The charactersfor these additional grays are tacked
on to the end of the palette.

The c n palette adds an additional n-1 shades of gray between each successive
Copyright © 1996. Thomas W. Christopherl73

Icon Programming Handbook

rgb gray level. That gives n?-2n+1 additional characters attached to the end of
the palette representing the additional levels of gray and atotal of n’-n+1 gray
levelsin total.

Table 66 shows the characters in the color palettes.

Table 66 Color palettes

Palette | Color Characters Additional grays

cl (see Table 65) " 0123456"

c2 "kbgcr nyw! "X

c3 " @\BC. . . XYZ" "abcd"

c4d "012...89ABC. .. "SUR* +-/ 7@
YZabc. . .yz{}"

c5 "\ x00\ x01\ x02. . .yz{|" "}~\d\ x80...

\ x8a\ x8b\ x8c

c6 "\ x00\ x01\ x02. .. "\ xd8\ xd9\ xda. ..

\ xd6\ xd7" \ xee\ xef \ xf 0"

There are four functions to use with palettes: PaletteColors, PaletteChars, Pal-
etteGrays, and PaletteKey. Their meanings are shown in Table 67.

Table 67 Palette functions.

Drawm mage(W x, Yy, S)

will fill the rectangular areain window
Wwith an upper |eft corner at position
(x,y) with theimage specified by string
s. String s has one of three forms:

"wi dt h, #hexdat a"
" width, ~hexdata"
"wi dt h, pal ette, chars”

In al cases, the width wi dt h specifies
the width of the rectangular areato fill.
Theheight isdetermined by the number
of characters or bits to write.

Drawt mage(Wx, vy,
"wi dt h, #hexdat a")

the hexdataisabi-level image.ltiswrit-
tenast ext ur ed: thelbitsarewritten
as the foreground color and the O bits
are written as the background color.

174 Copyright © 1996. Thomas W. Christopher

Table 67 Palette functions.

Windows and Graphics

Drawl mage(Wx, vy,
" width, ~hexdata")

the hexdataisabi-level image. It is
written as masked: the 1's are written

as foreground color but the 0’'s are not

written, leaving those pixels unmodi-
fied.

Dr aw mage(W x, v,
"W dt h, pal ette, chars")

the colors specified associated with th
charactershar s in palettepal et t e are
used to fill in the pixels from left to

right, top to bottom. Character \377 and
character ~ (if it is not contained in the

palette) specify transparent pixels

which will not overwrite the previous
value. Commas and spaces, if the pal
ette does not contain them, can be in-

serted to ease readability; they will not

display.

Pal ett eChars(pal ette)

returns as a character string the charac-

ters in the palette. For a grayscale pal
ette, the characters will represent the
intensities of gray from black to white
in order. For uniform color palettes, ch

the first ¥ characters can be indexed by

n intensity levels (0, 1, ..., n-1) for red,

green, and blue, to select the character

representing that combination of intep-

sities,P[r *n* n+g*n+b+1] . The last &
2n+1 characters represent the addition
gray levels in order from darkest to
lightest. Since the trailing grays have
gaps (the grays in the regular palette)|,
you intend to index into the grays, us
functionPal et t eGr ays to get a
complete list.

Pal et t eCol or (
pal ette,s)

returns the color in palette represented

by the single character s.

Pal etteG ays(pal ette)

returns a string containing in order from

1”4

black to white the characters from the
palette representing levels of gray.

Pal ett eKey(pal ette,s)

returns a character from the palette

which is close to the color specified Qy

string s.

Copyright © 1996. Thomas W. Christopherl75

[¢)

al

if

Icon Programming Handbook

17.6.4

17.7

Table 67 Palette functions.

Readl mage(W s1, x, y, s2) | willread the image in the file namsd
into the windowWwith its upper-left

corner at positionq,y). If s2 is speci-
fied, the colors in the image are convert-

ed into colors in palette2.

Mutable colors

Icon gives you access to your system’s color map, if it is changeabhataa

ble colors. You can allocate a mutable color and change the color it represents

repeatedly. Whenever you assign a mutable color a new actual color, all the pix-
els written with that mutable color change to the new color. (The internal repre-

sentation of a mutable color is called a color map entry.)

You allocate a mutable color assigning it the initial color s with function

NewCol or ('s) . NewCol or returns a negative integer to represent the muta-
ble color. You can assign it a different color with the func@ohor (n, s),

wheren is the mutable color arglis a color specification. On some systems,
when a color map entry is no longer needed, it can be returned to a pool for sub-
sequent reallocation with the functibneeCol or (n) .

Table 68 Mutable color functions.

NewCol or (W s) allocates a changeable color map entry far a
new mutable color and assigns it initially the
color specified by s, and returns a small neg-
ative integer to represent the mutable color.
Fails if no changeable color map entry is
available.

Col or (sets each mutable colorta the correspond
Wnl,s1,n2,s2,...) |ing color specified by,s

FreeColor(nl,...) frees the color map entries for all Not
available in all implementations. Bad things
may happen if any pixels are still assigne
the color being freed.

[oX

Pixel rectangles, moving, saving, restoring

There are several functions that operate on rectangular areas of pixels. You can
copy such an area, write it to a file, read it from a file, or examine the pixels in

176 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

it. These functions are given in Table 69

Table 69 Pixel rectangle functions.

CopyAr ea(copy a rectangular area of widttand height
WL, W2, x1,y1, w, h, h from position k1,y1) in WL to position
X2,y2) (x2,y2) in windowW2. The k,y) values

specify the upper-left corner. W2 is omit-
ted,W is both the source and destination
window. If WL and\W2 are both omitted,
& ndow s the source and destination.

Pi xel (WX, y, w, h) generates the colors of the pixels in the rect-
angle of widthw and height with its upper
left corner in positionx,y) of windowW The
pixels are generated by rows, left to right, top

to bottom.
Readl mage(W s1, x, y) | will read the image in the file namsd into
Readl mage(the windowWwith its upper-left corner at pa-
Wsl, x,Y, s2) sition (X,y). If s2 is specified, the colors in
the image are converted into colors in palette
S2.
Wi tel mage(writes the rectangle of pixels of widihand
Ws, x,y,w h) heighth with its upper left corner in position

(x,y) of windowWinto the file named. Nor-
mally Icon writes the file in GIF format, but
it may allow other extensions on the file
name to choose other formats.

17.8 Events

Mouse operationsin awindow or characterstyped inawindow when no WRead
or WReads is pending cause events to be queued. Y ou can process an event by
calling thefunction Event (wi ndow) which will return the event code and will
set the values of certain keywords.

Event () will wait for an event to occur. If you don’t want to wait, you can
execute Pendi ng(wi ndow) which will tell you the length of the event queue

for the window. If it is zero, there are no events pending. However, each event
IS currently represented by three elements in the list, so the length of the pending
list is three times the number of events queued up.

The event codes returned for keyboard characters are single character strings.
The events returned for the mouse buttons and for some other keyboard keys are
integers. The integers corresponding to certain events are the values of some
keywords. For other special keys, there is a file of definitioegsyns. i cn,

that you can include to refer to the key by name rather than number:

$i ncl ude "keysyns.icn"

Copyright © 1996. Thomas W. Christopherl77

Icon Programming Handbook

There are three keyboard keys that do not themselves cause events but rather
modify other events: SHIFT, CONTROL, and META (or ALT). The states of
those keys when another event occurs are preserved in the keywords &shi f t ,
&cont r ol , and &ret a.

Figure 51 is a program that will display in awindow and write to afile the
events that occur in the window. The call to Event returns the event code and

Figure51 Show events.

l'i nk graphics

procedure main()
WOpen("si ze=600, 400") | stop("can’'t open w ndow')
f:=open("tstevl.txt","w")

repeat {
e: =Event ()
WVite(e,",", keys(),",",
&, ", ", &, ", ", & nterval)
wite(f,e,",", keys(),",",
&, ",",&,",", & nterval)
if e===("q"|"Q") then break
cl ose(f)
WCl ose()
end

procedure keys()

return((&shift & "1")| "0") ||
((&meta & "1")| "0") ||
((&control & "1")| "0")

'0
end

sets the values for some keywords. Keywords &x and &y give the position in
the window of the cursor when the event occurred. Keyword & nt er val, on
some systems, givesthe time in milliseconds since the previous event occurred.
The keyword &shi ft succeedsyielding &null if the SHIFT key was pressed
during the event, but fails if it wasn’t. Similargret a and&cont r ol report
the META (ALT) and CONTROL keys.

Figure 52 shows a program to draw circles in a window under mouse control.
The repeat loop is an example of event-driven programming. A "Q" typed on
the keyboard will break out of the loop. Pressing the left button of the mouse
saves the cursor’s x and y position as the center of the circle. Holding down the
button and dragging the mouse draws a circle out to the current mouse position.
Releasing the button leaves the circle drawn. As the mouse is moved with the
left button held, the circle is shown. The trick for showing the circle uses the
"drawop=reverse" attribute assignment. A circle is drawn. Then as the mouse
moves, the previous circle is redrawn, which erases it, and the new circle is
drawn. As each circle is finished, it's center is marked with crossed lines and

178 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

the center of the previous circle is unmarked.

Figure52 Codeto draw circles.

l'i nk graphics
procedure main()
| ocal radius,Xx,y, px, py
pXx: =py: =-10
WOpen(" si ze=400, 300", "dr awop=r everse") |
stop("can’t open w ndow')
repeat { case Event() of {
"gq"|"Q': break
& press: DrawCircl e(x: =&, y:=&y, radius := 0)
& drag: {
DrawCircl e(x, y, radi us)
DrawCircle(x, y, radius:=sqrt((&x-x)"2+(&y-y)"2))

& rel ease: {
Dr awSegnent (px- 5, py, px+5, py, pX, py- 5, px, py+5)
Dr awSegnent (x- 5, y, x+5,y, X, y-5, X, y+5)
$x::x; py: =y

} }
Dr awSegnent (px- 5, py, px+5, py, px, py- 5, pXx, py+5)
Witelmage("circles. bnm")

end

The keywords and functions used by the event system are shown in Table 70.

Table 70 Event keywords and functions.

Active() returns a window that has one or more
events pending. It will wait until such a
window isavailable. It will poll theopen
windowsin adifferent order eachtimeto
avoid starvation. It failsif there are no
open windows.

&col Thetext column of the event reported by
the most recent call of Event.

&cont r ol succeeds returning & null if the CON-
TROL key was pressed during the event
reported by the most recent call of Event,
otherwise fails.

Copyright © 1996. Thomas W. Christopherl79

Icon Programming Handbook

Table 70 Event keywords and functions.

Enqueue(We, x,y,cns, i)

adds an event to the end of the list of
pending eventsin window W. The event
codeise. Thepositionis(x,y). Thestring
cms indicates the state of the control,
meta, and shift keys: if the character "c"
Isin the string, the event reports the
CONTROL key was pressed, and simi-
larly "m" and "s" for META (ALT) and
SHIFT. Parameter i givesthetimein
millisecondsfor &interval. By default, e
iIs&null, xis0,yis0,cmsis", andiisO.

Event (W

waits for an event in window W (if nec-
essary), removes the first event from

W’s event queue, sets &control, &shif
&meta, &interval, &row, &col, &x, and
&y, and returns the event code.

’

& nt erval

the interval, in milliseconds, between the

event reported by the most recent call
Event and the event preceding it. This
not meaningful on all systems.

of
is

&l drag

the integer event code returned when
mouse is moved while the left mouse
button is pressed.

the

&l press

the integer event code returned when
left mouse button is pressed.

the

&l rel ease

the integer event code returned when
left mouse button is released.

the

&mdr ag

the integer event code returned when
mouse is moved while the middle mou
button is pressed.

the
5e

&net a

succeeds returning &null if the META
(ALT) key was pressed during the eve,
reported by the most recent call of Eve
otherwise fails.

nt
nt,

&npr ess

the integer event code returned when
middle mouse button is pressed.

the

&nr el ease

the integer event code returned when
middle mouse button is released.

the

Pendi ng(W

returns the list of events pending in win-

dow W. The listis empty is no events
pending.

re

180 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

Table 70 Event keywords and functions.

&r drag the integer event code returned when the
mouse is moved while the right mouse
button is pressed.

&resize the integer event code returned when the
window is resized.

&r ow The text row of the event reported by the
most recent call of Event.

&r press the integer event code returned when the
right mouse button is pressed.

& rel ease the integer event code returned when the
right mouse button is released.

&shift succeeds returning &null if the SHIFT
key was pressed during the event report-
ed by the most recent call of Event, oth-
erwise fails.

&x The x coordinate of the event reported by
the most recent call of Event.

&y The y coordinate of the event reported by
the most recent call of Event.

17.9 Canvases and graphics contexts
There are two components of a window:
* the canvas, upon which the figures are drawn, and

» the graphics context, that specifies the font, line width, and other attributes
that control the appearance of what is drawn in the window.

Some window attributes are canvas attributes, others are graphics context at-
tributes.

The appearance of the window on the screen is controlled by canvas attributes.
The attributecanvas, controls window visibility. It's options are shown
inTable 71.

Table 71 The canvas attribute.

"canvas=nor mal " the window is visible and may be resized and
moved about on the screen.

"canvas=hi dden" the window is invisible.

"canvas=i coni c" the window is represented by an icon.

Copyright © 1996. Thomas W. Christopherl81

Icon Programming Handbook

Table 71 The canvas attribute.

"canvas=maxi mal " | the window occupies the entire screen.

If the window isnor mal , its position on the screen is determined by its pos

(or posx and posy) attributes, itssize by itssi ze (or hei ght andwi dt h

orl i nes andcol umes) attributes. The window’s label is the value of its

bel attribute. The window’s initial contents can be specified on window cre-
ation by its mage attribute. The window can be moved in front of overlapping
windows by the functioai se(), or moved behind them with the function
Lower ().

If the window isi coni c, attributei conpos specifies its position on the
screenj conl abel specifies the caption on its icon, andoni nage speci-
fies the icon’s graphics image.

There are a set of canvas attributes that identify the display screen the window
appears on. Attributdi spl ay identifies the display devicdj spl ay-

hei ght gives its height in pixelsli spl ayw dt h gives its width, and

dept h gives the number of bits per pixel.

More than one window can share the same canvas. FuGttiore(W creates

a new window with the same canvadMsut a different graphics context. Sim-
ilarly, more than one window can share the same graphics attributes. Function
Coupl e(WL, W) creates a window combining W1's canvas and W2's graph-
ICS context.

Table 72. Canvas manipulation functions.

C one(creates a new window with the same canvastas

Ws1,...,sn) | adifferent graphics context. The new graphics gon-
text is initialized from\Ws and then is modified by
the attribute assignmergd, ... sn.

Coupl e(W, W2) creates a window combininil’s canvas anii®’s
graphics context.

Lower (W moves the window, W, behind overlapping win-
dows.

Rai se(W moves the window, W, in front of overlapping win-
dows.

Uncoupl e(W frees the window W. When the last binding to the

same canvas is removed, the window is closed.

WCl ose(W closes window W: its canvas disappears from the
screen. It still, however, exists and can be referenced
via other bindings. Closing@w ndow sets&wi n-
dowto &nul | .

182 Copyright © 1996. Thomas W. Christopher

17.10

17.11

Windows and Graphics

Synchronizing window output

On some systems, the functions queue window output for display and return,

rather than waiting for the output to be complete. This speeds up output, but can

cause problems. The user's mouse commands may be responding to an earlier
window contents. There are three functions to force the buffer to be written.
They are shown in Table 73.

Table 73 Functions to flush the output buffer.

WDel| ay(W i) | performs the rest of the output queued for window W, and
then delays i milliseconds.

WFl ush(W performs the rest of the window commands that have been
queued for window W.

WSync(W waits until the rest of the window commands have been
performed that have been queued for window W. WSync
Is aimed at client-server graphics.

Dialogs

There are several functions that perform standard dialogues with users. Four of
them are shown in Table 74.

Table 74 Functions for standard dialogs.

Di al og(displays a dialog box. Lidtl specifies
W L1, the caption for the box, strings to be dis-
L2, L3, L4, played one per line. Lit5 specifies
L5,1) one or more buttons: each strind-iB

specifies the caption on a button. Integer
I is the index of the default button, of
zero if there is no default.

ListsL2, L3, andL4 specify zero or

more text entry fieldd-2[j] gives the
caption;L3[j], the default values; and
L4[j], the maximum widths.

Global variabledi al og_val ue is as-
signed a list of the resulting text fields.
The function returns the name of the
button pressed to terminate the dialog.

Not i ce(displays a dialog box with an "Okay"
Wsl1,s2,...,sn) | button. Each stringi is displayed on a
different line.Not i ce returns the
string "Okay" when the user presses the
button.

Copyright © 1996. Thomas W. Christopherl83

Icon Programming Handbook

17.12

Table 74 Functions for standard dialogs.

OpenDi al og(displays adialog box containing a cap-
Ws1l, s2) tion, and editable text string, and

"Okay" and "Cancel" buttons. It isin-
tended to be used for opening files. Pa-
rameter s1 specifies the caption—
"Open: " by default. Parameter2
specifies the initial value of the editable
text string—the empty string by defau
The edited text string value is placed in
global variabledi al og_val ue.
OpenDi al og returns the name of the
button pressed.

[l

SaveDi al og(displays a dialog box containing a cap-
Wsl, s2) tion, and editable text string, and "Yes",
"No", and "Cancel" buttons. Itis intend-
ed to be used for saving data in files. Pa-
rameters1 specifies the caption—
"Save: " by default. Parametsr2
specifies the initial value of the editable
text string—the empty string by defau
The edited text string value is placed in
global variabledi al og_val ue.
SaveDi al og returns the name of the

[l

button pressed.

Example. Here is an example using Notice.

l'i nk graphics
i nk dial og
procedure main()
WOpen(" si ze=500, 500", "canvas=nor mal ",
"pos=150, 30") | stop("can’t open w ndow')
Notice("Just give the word",
"and 1’|l reformat",
"your hard drive...")
Noti ce("Just ki dding")
end

Table of Attributes

"ascent"” the number of pixels the current font extends
above the base line. Read only.

184 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

" bg=color"

selects the background color for the window.
Thedefaultis" bg=whi t e". Colorsare pre-
sented in Section 17.6 on page 168.

"canvas=nor nal "

the window is visible and may be resized and
moved about on the screen.

"canvas=hi dden"

the window isinvisible.

"canvas=i coni c"

the window is represented by an icon.

"canvas=naxi nal "

the window occupies the entire screen.

"col =nunt'

column of the text cursor (in characters).

"cursor=s"

controls the visibility of the text cursor in the
screen: "on" or"of f","of f" by default.

"descent"

the number of pixelsthe current font extends be-
low the base line. Read only.

"dr awop=s"

string s specifies either "copy” or "reverse’.
With "copy" the new pixelsreplace the existing
pixels. With "reverse”, the new pixelswill com-
bine with the existing pixelsin an exclusive-or
fashion converting foreground-colored pixels
into background-colored and vice versa.

" dx=num"

integer to be added to each x parameter passed
to a graphics function to determine the actual
pixel position in the window.

" dy=num"

integer to be added to each y parameter passed
to a graphics function to determine the actual
pixel position in the window.

"echo=s"

flag controlling whether characters typed to
WRead and WReads are displayed on the
screen:"on" or"of f","on" by default.

" f g=color"

selects the foreground color for the window.
Thedefault is" bg=bl ack". Colorsare pre-
sented in Section 17.6 on page 168.

"f hei ght"

height of the current text font, top to bottom.
Read only.

Copyright © 1996. Thomas W. Christopher185

Icon Programming Handbook

“fillstyle=s"

string s specifies whether a patternis to be used
when drawing filled figures, and if so, how. The
optionsare" sol i d","t ext ured", and
"masked".If "sol i d" isspecified, figures
arefilled with the foreground color. If "t ex-

t ur ed" is specified, both the foreground and
background colors of the pattern are used. If
"masked", only the foreground colors of the
pattern are written; pixels corresponding to the
background colors are |eft unchanged.

Thedefaultis" sol i d".

"font=s" current text font.
"fw dth" width of the current text font. Read only.
"hei ght =h" height of the window in pixels. Defaults to

enough for 12 lines of text.

"1 eadi ng=nuni

thenumber of pixelsbetween successivelinesof
text.

"l'i nestyl e=s"

string describing the style of the linesto be
drawn. The options differ based on the underly-
ing graphics system. For X-windows, the op-
tionsaresol i d,dashed,andstri ped. The
dashed lineshavegaps. Thest ri ped lines
aredashed with their gapsfilled with the
background color.

In the beta version of Icon for Windows, the op-
tionsaredashed, dot t ed, sol i d, dash-
dott ed, and dashdot dot t ed. Style

stri pedistreated asdashed.

The default styleissol i d.

"l'i new dt h=num"

number specifying the width of the lines drawn.

"pattern=s"

string s specifies the fill pattern to be used, ei-
ther a pattern name (Figure 44) or abi-level im-
age (section 17.4.4).

"pos=x, y"

equivaent to: " posx=x"," posy=y"'. De
faultsto" pos=0, 0", i.e. thewindow isdrawn
at the upper left corner of the screen.

" posx=X"

the horizontal position of the |eft edge of the
window on the screen.

186 Copyright © 1996. Thomas W. Christopher

Windows and Graphics

" posy=y" the vertical position of the top edge of the win-
dow on the screen.

"reverse=s" string s iseither " on" or " of f . When
changed from"on" to"of f" or"of f" to
"on", thevalues of bg and f g are swapped.

"row=nuni row of the text cursor (vertical position in char-
acters).

"size=w, h" equivalent to:" w dt h=w" " hei ght =h"

"w dt h=w" width of the window in pixels. Defaults to
enough for 80 columns of text.

" x=numn horizontal position of the text cursor (in pixels).

"y=numni vertical position of the text cursor (in pixels).

Copyright © 1996. Thomas W. Christopher187

Icon Programming Handbook

188 Copyright © 1996. Thomas W. Christopher

Chapter 18

Functions and keywords

Functions and keywords

Table 75 Summary of functions and keywords.

abs(r) absolute value
acos(r) arccosineinradians, -1<r<1.
Active() returnsawindow that has one or more events pending.

It will wait until such awindow is available. It will
poll the open windowsin adifferent order eachtimeto
avoid starvation. It failsif there are no open windows.

addrat(r1,r2)

Add rational numbers; r1+r2.

link rational

any(c) any(c,& subject,& pos,0)

any(c, s) returns 2 if §1] existsand isin character set c; other-
wiseit fails

any(c,s,i) returns i+1if gi] existsand isin character set c; oth-

ewiseit fals

any(c,s,i,j)

returnsi+1if i<j and gi] existsand §i] isin character
st c; otherwise it fails

args(p) :'jeturnsthe number of parameters required by proce-
urep.

If pisauser procedure with a variable number of pa-
rameters, ar gs(p) returnsthe negative of the num-
ber of parameters p was declared with.
If pisabuilt-in procedure with a variable number of
parameters, ar gs(p) returns-1.

&asci i produces the character set containing all ASCII char-
acters (128 characters).

asin(r) arcsineinradians, -1<r<1.

atan(rl,r2)

arc tangent of r1/r2 in radians with the sign of rl.

Copyright © 1996. Thomas W. Christopher189

Icon Programming Handbook

Table 75 Summary of functions and keywords.

atan(r)

arc tangent of r in radians

bal (c1, c2, c3)

bal(c1,c2,c3,& subject,& pos,0)

bal (c1,c2,c3,5s)

generates the positions k in swhere
1<k<*st+1 and K] (if it exists) isin cset c1,

the number of charactersin s[1:k] in cset c2 equalsthe
number in c3,

there is no position m, 1<msk, where the number of
charactersin g[1:m] in cset c2 isless than the number
inc3.

bal (c1,c2,c3,s,i)

generates the positions k in swhere
isk<*st+1 and g[K] (if it exists) isin cset c1,

the number of charactersin g[i:k] in cset c2 equalsthe
number in c3,

there is no position m, ism<k, where the number of
charactersin gi:m] in cset c2 is less than the number
inc3.

bal (c1,c2,¢3,s,i,j)

generates the positions k in swhere
I<k<j and gK] (if it exists) isin cset c1,

the number of charactersin g[i:k] in cset c2 equalsthe
number in c3,

there is no position m, ism<k, where the number of
charactersin g[i:m] in cset c2 is less than the number
inc3.

basenane(pat h,
suf fi x)

returns the base name of the file indicated by pat h.
Thesuf f i x string isremoved from the right. E.g.
basename(" D:\IPL\PROCS\BALQ.ICN",
".ICN")
returns "BALQ". Works for UNIX, MSDOS, and
MACs.

| i nk basenane

ceil(r)

nearest integer to r away from O.

i nk real 2i nt

190 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

center(s,i)

produces a string of length i containing string s cen-
tered in it with blanks append to both sides to fill out
thefield. If *s>i, thenit returnsthe middlei characters
of s.

center(sl,i,s2)

produces a string of length i containing string s cen-
tered in it with copies of string s2 append to both sides
tofill out thefield. If *s>i, then it returnsthe middlei
characters of s.

char (i) produces a one character string where the single char-
acter hastheinternal representation given by integer i,
0(i(255.

chdir(s) changes the current directory to that indicated by

string s. Failsif it cannot change to that directory, per-
haps because it does not exist.

dip(Wx,y,w, h)

Set aclipping rectangle with its upper left corner at po-
sition (x,y), and width w and height h. The default w
and hvalues areto the end of the window. Subsequent
drawing outside the bounds will have no effect. When
called without the (x,y) parameters, clipping isturned
off and the entire canvas can be written.

Returns the window, W.

fies the region

0—no specific region
1—static region
2—string region
3—block region

Copyright © 1996. Thomas W. Christopherlgl

re-

&cl ock returns a string giving the current time of day
"hh: mm ss", in 24 hour form.

C one(creates anew window with the same canvas as Whut a

Ws1,...,sn) different graphics context. The new graphics context

Is initialized from W’s and then is modified by the at-
tribute assignments s1, ... ,sn.

cl ose(f) closes the file bound to file object f.

&col The text column of the event reported by the most
cent call of Event.

collect() forces a garbage collection.

collect (i) forces a garbage collection of region i, where i speci-

Icon Programming Handbook

Table 75 Summary of functions and keywords.

collect(i,j)

forces a garbage collection of region i, where i speci-
fiestheregion asshownfor col | ect (i) above.
Failsif thereare not at least j bytesavailablein the re-
gion after collection.

&col | ecti ons

generates four values:
» the number of garbage collections

» the number caused by attempts to allocate in t
static region

» the number caused by attempts to allocate in t
string region

» the number caused by attempts to allocate in t
block region.

The first value may be larger than the sum of the o
three due to calls tool | ect () .

her

Col or (W
nl,sl,n2,s2,...)

sets each mutable colorta the corresponding color
specified by s

conponent s(s, sep)

conmponent s(s)

returns a list of the components of the patlwhere
the components of the path are separated by the
actersep. The separator defaults to "/" which is ag
propriate for UNIX. E.g.
components("/a/b/c.d")
returns
['/","a","b","c.d"]

link fil enane

char-

conpl ex(r,i)

create complex number with real part r and imagin
part i.

i nk conpl ex

ary

conpress(s,c)

Let x be a character in set c. A substring of s compa
entirely of character x is replaced with a single cha
ter x.

link strings

)sed
rac-

&contr ol

succeeds returning &null if the CONTROL key wa
pressed during the event reported by the most reg
call of Event, otherwise fails.

ent

192 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

copy(x)

copy(x) createsanew instance of any mutable ob-
jectx (list, table, set, record) that hasthe sameinternal
structureasx, butisnot equal (~===) tox. Immutable
objects like numbers, strings, csets are left asis.

CopyArea(W, W2,
x1,y1l,w, h, x2,y2)

copy arectangular area of width w and height h from
position (x1,y1) in W1 to position (x2,y2) in window
W2. The (x,y) values specify the upper-left corner, of
course. If W2 is omitted, W1 is both the source and
destination window. If W1 and W2 are both omitted,
&window is the source and destination.

cos(r)

cosine of r (given in radians)

Coupl e(W, W2)

creates a window combining W1's canvas and W2's
graphics context.

cpxadd(x1, x2)

add complex numbers x1 and x2

i nk conpl ex

cpxdi v(x1, x2)

divide complex number x1 by complex number x2

i nk conpl ex

cpxmul (x1, x2)

multiply complex number x1 by complex number x

i nk conpl ex

cpxsub(x1, x2)

subtract complex number x2 from complex numbef x1

i nk conpl ex

cpxstr(x) convert complex number x to string representation
i nk conpl ex
&cset produces the character set with all characters present
(256 characters).
¤t the currently executing co-expression.
&dat e returns the current date in the fotmyyy/ nmi dd" .
&dat el i ne returns the current date and time of day as a string.
decode(x) translates a string produced by encode back into a|data
structure isomorphic to the one encoded.
| i nk codeobj
del ete(S, x) deletes element x from set S. Returns set S.

Copyright © 1996. Thomas W. Christopher193

Icon Programming Handbook

Table 75 Summary of functions and keywords.

L1, L2,L3,L4,L5,i)

del ete(T, x) removes the key x and its value from table T.

detab(s,il1l,i2,...,in) copies string s replacing tab characters with blanks.
The integer parameters give the tab stops. If moretab
stops are needed, the last interval isrepeated.

D al og(W displaysadialog box. List L1 specifiesthe caption for

the box, strings to be displayed one per line. List L5
specifies one or more buttons: each string in L5 spec-
ifies the caption on a button. Integer i isthe index of
the default button, or zero if there is no default.

ListsL2, L3, and L4 specify zero or more text entry
fields: L2[j] givesthe caption; L3[j], the default val-
ues; and L4[j], the maximum widths.

Global variable dialog_valueis assigned alist of the
resulting text fields. The function returns the name of
the button pressed to terminate the dial og.

&digits ‘0123456789’

di splay(i,f) writes to file f the names of thei most recently called
active procedures, their local variables, and the global
variables. Used for debugging.

di splay(i) writesto &er r out the names of the i most recently
called active procedures, their local variables, and the
global variables. Used for debugging.

di splay() writesto &er r out the names of al the active proce-

dures, their local variables, and the global variables.
Used for debugging.

divrat(rl,r2)

Dividerational numbers: r1/ r2.

link rational

dopen(s)

opensthefile named s using default options (i.e.
open(s,"rt")).If thefileisnot found in the cur-
rent directory, all thedirectorieswhose pathsarelisted
inenvironment variable DPATH aretried, left to right
until the file can be successfully opened. The pathsin
DPATH are separated from each other with blanks; the
directories within the paths are separated by "/ " char-
acters.

|l i nk dopen

194 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

dpat h('s)

returnsthe path for thefilewhose base nameiss. If the
fileis not found in the current directory, all the direc-
tories whose paths are listed in environment variable
DPATH aretried, left to right until thefile can be suc-
cessfully opened. The paths in DPATH are separated
from each other with blanks; the directorieswithin the
paths are separated by "/ " characters. (lconon M S
DOS alows"/ " rather than "\ " in paths.) Procedure
dpat h returns

» s, if the file is found in the current directory.

e path || "/" || s,ifthefileisfoundapat h
within DPATH.

i nk dpat h or
|l i nk dopen

See alsopat hf i nd.

DrawArc(W x, y, w, h)
Dr awAr c(W
X,Y,w h, theta, phi)

Draws an ellipse in the rectangle of width w and height

h and a corner at position (x,y). If theta and phi are
en, it draws an arc of the ellipse starting at angle tt
and extending for angle phi.

Returns the window, W.

giv-
neta

DrawCircle(Wx,y,r)
DrawCircl e(W
X,Y,r,theta, phi)

Draws a circle with center at position (x,y) and rad
r. If theta and phi are given, it draws an arc of a cir
starting at angle theta and extending for angle phi

Returns the window, W.

us
cle

Dr awCur ve(W
x1,y1,x2,y2,
..., XNn,yn)

Draws a smoothed curve from (x1,y1) to (xn,yn) pé
ing through the intermediate points in order. If xn=
and yn=y1, then the curve will be closed and smoot
through point (x1,y1) as well.

Returns the window, W.

ASS-
X1
hed

Drawm mage(W x, Yy, S)

will fill the rectangular area in windowwith an upper
left corner at position(y) with the image specified by
string s. String s has one of three forms:

"wi dt h, #hexdat a"
" width, ~hexdata"
"wi dt h, pal ette, chars”

In all cases, the widthi dt h specifies the width of the

rectangular area tofill. The height is determined by
number of characters or bits to write.

~

1

the

Copyright © 1996. Thomas W. Christopher195

Icon Programming Handbook

Table 75 Summary of functions and keywords.

Drawt mage(Wx, vy,
"wi dt h, #hexdat a")

the hexdatais a bi-level image.lt iswritten ast ex-
t ur ed: the 1 bits are written as the foreground color
and the O bits are written as the background color.

Drawl mage(Wx, vy,
" width, ~hexdata")

the hexdatais a bi-level image. It iswritten as
masked: the 1's are written as foreground color bt
the O’s are not written, leaving those pixels unmog
fied.

it

Dr aw mage(W x, y,
"“wi dt h, pal ette, chars")

the colors specified associated with the characters

char s in palettepal et t e are used to fill in the pixels
from left to right, top to bottom. Character \377 an
character ~ (if it is not contained in the palette) spe
transparent pixels which will not overwrite the pre
ous value. Commas and spaces, if the palette doe
contain them, can be inserted to ease readability;

will not display.

D

d
Cify

S not
they

Dr awLi ne(W Draws a connected sequence of straight lines. A
x1,y1, x2,y2, straight line is drawn from point (x1,y1) to (x2,y2),
..., XNn,yn) then a line from (x2,y2) to (x3,y3), and so on to

(xn,yn).
Returns the window, W.

Dr awPoi nt (W Draws a point at each position (x,y) given.

x1,yl,x2,y2,...,Xn,yn)

Returns the window, W.

Dr awPol ygon(W
x1,yl,x2,y2,...,Xn,yn)

Equivalent to DrawLine with a final line segment back

to (x1,y1).

Returns the window, W.

Dr awRect angl e(W
x1,yl, x2,y2)

Draws the rectangle with opposite corners (x,y) ar
(x+w,y+h). Parameters w and h default to the edgg
the window.

Returns the window, W.

nd

D
o
=4

Dr awSegnent (W
x1,yl,x2,y2,...,Xn,yn)

Similar to DrawLine, except it draws disconnected
line segments between pairs of points: (x1,yl) to
(x2,y2), then (x3,y3) to (x4,y4), etc.

Returns the window, W.

DrawsStri ng(Wx,y, s)

writes the string s starting at position (x,y) in windg
W without modifying the text cursor.

W

dtor(r)

degrees to radians

196 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

&e

The base of the natural logarithms. Approximately
2.71828182845904

encode(x)

transl ates the data structure accessible from x into a
string and returns that string. Any contained files,
functions, procedures, co-expressions, and windows

cannot be properly contained in a string, so don’t try to

include them.

| i nk codeobj

Enqueue(W
e, X,y,cns,i)

adds an event to the end of the list of pending eve
in window W. The event code is e. The position is
(x,y). The string cms indicates the state of the conf
meta, and shift keys: if the character "c" is in the
string, the event reports the CONTROL key was
pressed, and similarly "m" and "s" for META (ALT

nts

rol,

and SHIFT. Parameter i gives the time in milliseconds

for &interval. By default, e is &null, x is 0, y is 0, cm
is™,andiis 0.

S

entab(s,il1,i2,...,in)

copies string s inserting tabs where possible. The
ger parameters give the tab stops.

nte-

EraseArea(W x, y, w, h)

Fills the rectangle with opposite corners (x,y) and
(x+w,y+h) with the background color. Parameters
and h default to the edge of the window.

Returns the window, W.

W

&err or

controls whether errors cause the program to tern
nate. When zero, an error causes program termina
with an error message. If nonzero, an error cause
failure and&er r or is decremented. The error meg
sage that would have been reported is instead assi
to keywords&er r or nunber , &errort ext, and
&errorval ue.

Ni-
aition
S a

gned

errorclear()

clears the indication that an error has occurred. R¢
ences to the keyword@er r or nunber , &error -
t ext, and&er r or val ue fail until the next error
has occurred.

efer-

&err or nunber

the number of an error.

&errortext

the text explaining the error.

&errorval ue

the offending value (e.g., whose type didn't match)).

Access t&&er r or val ue will fail if there is no of-
fending value associated with the error.

Copyright © 1996. Thomas W. Christopher197

Icon Programming Handbook

Table 75 Summary of functions and keywords.

&er rout the standard error output file. (It isnot avariable; it
cannot be reassigned.)
Event (W walits for an event in window W (if necessary), re-

moves the first event from W’s event queue, sets
&control, &shift, &meta, &interval, &row, &col, &x,
and &y, and returns the event code.

exi st s(namne)

succeeds if file namathne can be opened, otherwise

5i0n

fails.
link exists

exp(r) €, orin Icon, &e\(r)

&f eat ures generates strings indicating the features of this ver
of Icon.

&ile the filename of the file this code was compiled fro

m.

FillArc(WXx,y,w, h)

fills an ellipse within the rectangular area which has

one corner at position (x,y) and width w and height h.

Fill Arc(W
X, Y, w h, theta, phi)

fills a wedge of an ellipse within the rectangular area
which has one corner at position (x,y) and width w and

height h. The wedge subtends the arc that would
drawn by DrawArc{V x, y, w, h, theta, phi).

FillCrcle(Wx,y,r)

fills a circle with center (x,y) and radius r.

FillCGrcle(W
X,Y,r,theta, phi)

fills a wedge of a circle with center (x,y) and radius
The wedge starts at angle theta and extends for &
phi.

r.
ngle

Fi | I Pol ygon(W

x1,yl,x2,y2,...,Xn,yn)

fills the contained areas in the polygon that would
drawn byDr awPol ygon(W x1,yl, x2,y2,
, XN, yn)

be

Fi | | Rect angl e(W

fills the rectangle with a corner at (x,y) and width

<

X, Y, w, h) and height h.
find(sl) find(s1,&subject,&pos,0)
find(sl, s2) generates the positions k in s2 from 1 to *s2-*s1 wh

contain the beginning of the occurrences of €1,
where s2[k+:*s1]==s1. Fails if no occurrences of S
are found.

ich

1

find(sl,s2,i)

generates the positions k in s2 from i to *s2-*s1 wh
contain the beginning of the occurrences of €1,
where s2[k+:*s1]==s1. Fails if no occurrences of S

ch

1

are found.

198 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

find(sl,s2,i,j)

generatesthe positionsk in s2 fromi to j-*sl at which
sl occurs as asubstring, i.e., where s2[k+:*s1]==sl.
Failsif no occurrences of sl are found.

findre(re,s,i,j)

wherereisastring containing the regular expression,
ands, i,andj areasusual. To useit, see6.13.1 on page
79.

link findre.

floor(r)

nearest integer to r toward 0.

i nk real 2i nt

flush(f)

Output istypically buffered before being written.
f I ush(f) flushes (actually writes out) the buffers
for filef .

Font (W s)

setsthefont in window W to that specified by string s,
or falsif it cannot be done.

FreeCol or(n1,...)

frees the color map entriesfor all n,. Not availablein
all implementations. Bad things may happen if any
pixels are still assigned the color being freed.

function()

generates the names of Icon’s built-in functions.

gauss()

returns a random number chosen from a gaussian dis-
tribution with a mean of zero

I i nk gauss

gauss_randon(x, f)

returns a random number chosen from a gaussian dis-
tribution with amean of x. Larger values of parameter
f will flatten the distribution.

I i nk gauss

gdl (dir) returnsalist of al the file namesin the directory indi-
cated by thestringdi r . Failsif therearenofilesinthe
directory. Works with UNIX and MSDOS. Includes
the directory in the file names.
l'ink gdl 2

gdlrec(dir) (recursivegdl) returnsalist of al the file namesin the

directory indicated by thestringdi r and all its sub di-
rectories. Failsif there are no filesin the directory.
Workswith UNIX and MSDOS. Includes the directo-
ry in the file names.

i nk gdl 2

Copyright © 1996. Thomas W. Christopherl99

Icon Programming Handbook

Table 75 Summary of functions and keywords.

get (L) removes and returnsthe first element of list L

getch() reads acharacter from the keyboard, but does not echo
it. Waits until a character is available.

getche() reads a character from the keyboard and echoesiit.
Waits until a character is available.

get env(s) Systemstypically provide environment variables: ata-

ble mapping string names into string values.
get env(s) returnsthe string associated with envi-
ronment variable s, or failsif there is none such.

get pat hs(p1,

generatespl, p2, ..., pn followed by all the pathsin

p2,...,pn) the PATH environment variable. Thiswill work for
both UNIX and MSDOS, choosing the correct PATH
syntax for each.
Got oRC(Wr, C) setsthe text cursor in window W to row r and column

¢. GotoRC(W) sets the row and column to 1,1.

Got oXY(W X, y)

sets the text cursor position in window W to position
(x,y). GotoXY (W) sets the position to (0,0).

&host

the name of the computer system the program is run-
ning on.

i and(i,j)

bitwiseand: abitissetintheinteger result only if itis
setinbothi and j.

i con(i)

bitwise complement: abit issetintheinteger result if
andonly if itisnot setini.

I mage(s)

produces a legible image of string s contained in dou-
ble quotes. Characters\ and " are represented \\ and \".
Special characters are represented in aform given in
Table 11 on page 61, but if thereisno \c representation
available, then the \xhh formis used.

| mage(cs)

produces alegibleimage of cset cscontainedinsingle
guotes. Characters\ and’ are represented \\ and \". Spe-
cial charactersarerepresentedinaformgiveninTable
11 on page 61, but if thereisno \c representation avail-
able, then the \xhh form is used.

I mage(n)

produces the string representation of number n.

200 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

I mage(x)

produces a legible image of object x. For the mutable
objects, thegenera formatis” t ype _nun{ si ze) ",
wheretypeidentifiesthetype of object, numidentifies
the particular instance of that type, and size gives the
number of elementsit contains.

& nput

thestandard input file. (Itisnot avariable; it cannot be
reassigned.)

I nsert (S, x)

insertselement x into set S(if itisnot already present).
Returns S.

insert(T,Xx,Yy)

sameas T[x]:=y, if T isatable.

I nt eger (x) converts x to an integer, if possible. Fails if not possi-
ble.

& nt erval theinterval, in milliseconds, between the event report-
ed by the most recent call of Event and the event pre-
ceding it. Thisis not meaningful on all systems.

tor(i,j) bitwiseor: abitissetinthe integer result if itisset in
eitheri orj.

ishift(i,j) shift thebitsini by j positionsto the left (if j>0) or [j|
to the right (j<0), filling with zeros.

I xor (i,]) bitwise exclusive or: abit is set in the integer result
onlyif itissetin one or the other but not both of i andj.

kbhit () succeedsif acharacter has been typed at the keyboard
that has not been read in yet. Use thisto avoid waiting.

key(T) generates all the keysin the table

&l case "abcdefghijklmnopgrstuvwxyz’

&l dr ag the integer event code returned when the mouseis
moved while the left mouse button is pressed.

left(s,i) produces a string of length i containing string s left
justified with blanks append to the right to fill out the
field. If *s>i, then it returns g 1:i+1]

left(s1,i,s2) produces a string of length i containing string s left
justified with copies of string s2 append to the right to
fill out thefield. If *s>i, then it returns s[1:i+1]

& etters 'ABCDEFGHIJKLMNOPQRSTUVWXY Zab-
cdefghijklmnopgrstuvwxyz’

&l evel Is the number of levels of active procedures calls.

Copyright © 1996. Thomas W. ChristopheQOl

Icon Programming Handbook

Table 75 Summary of functions and keywords.

&l ine is the number of the line this keyword occurs on.

list() create an empty list

l'ist(n) create alist of n elementsall initialized to &nul |

l'ist(n,val) crelatealist of n elementsall initialized to the value of
va

l og(rl,r2) logarithm of rl to the base r2

l og(r) loge I

Lower (W moves the window, W, behind overlapping windows.

&l press the integer event code returned when the left mouse
button is pressed.

&l rel ease the integer event code returned when the left mouse
button is released.

&mai n the co-expression that initially began executing the
program.

many(c) many(c,& subject,& pos,0)

many(c, s) returns the position in sfollowing the longest initial

substring in cset c. Returns *s+1 if all the characters
areinc. Failsif the first character of sisn'tinc. (This
saves you from having to write something like: (up-
to(~c,s) | (any(c,9)&*s+1)) \1.)

many(c,s, i)

returns the position in sfollowing the longest initial
substring in cset ¢ beginning at position i. Returns
*st1if al the charactersarein c. Failsif §i] isntinc.

many(c,s,i,j)

returns the position in sfollowing the longest initial
substring in cset ¢ beginning at position i and not ex-
tending beyond position j. Returnsj if all the charac-
tersareinc. Failsif g[i] isnotincor if g[i:j] would fail
(i.e, therangeisnot valid).

map(sl, s2,s3)

creates a new string which is a copy of sl except for
replacements made as follows: It replaces each char-
acter s1[i] that occursin s2 at s2[j] with the character
s3[j]. Strings s2 and s3 must be the same length. If the
same character occurs more than oncein s2, the right-
most occurrence determines the replacement charac-
ter.

202 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

mapstrs(s,|1,12)

replaces substrings. Lists |1 and 12 contain strings.
Each occurrence of astring of 11 in sisreplaced. An
occurrence of theith string of I11in sisreplaced by the
ithstringin 12. If 12 is shorter than 11, the rightmost,
unpaired stringsin 11 are deleted. In cases of overlap,
theleftmost match is preferred. If two strings match at
the same location, the longer is preferred.

link mapstrs

mat ch(sl)

match(sl,& subject,& pos,0)

mat ch(s1, s2)

returns *s1+1 if s2[1+:*s1] == sl; otherwise fails

mat ch(sl,s2,i)

returns * s1+i if s2[i+:*s1] == sl; otherwise fails

mat ch(sl,s2,i,j)

returns *s1+i if s2[i+:*sl] == sl; otherwise fails. Re-
quiresposition j to be at least * sto theright of position
i oritwill fail.

&mdr ag

the integer event code returned when the mouseis
moved while the middle mouse button is pressed.

menber (S, x)

succeedsif x isamember of set S, fails otherwise. Re-
turns x if it succeeds.

menber (T, x)

succeedsif key x isintable T. Returns x if it succeeds.

&net a

succeedsreturning &null if the META (ALT) key was
pressed during the event reported by the most recent
call of Event, otherwise fails.

nmove(i)

moves &pos to position &pos+i in&subj ect and
returns the substring between the original position of
&pos and its new position. The new position can be

zero or negative, but &pos is kept as a positive num-
ber. The assignment to &pos isreversible: when re-

sumed during backtracking, &pos will be set back to
itsorigina position before the move.

&npr ess

the integer event code returned when the middle
mouse button is pressed.

npyrat (r1,r2)

Multiply rational numbers: rl* r2.

link rational

&nr el ease

the integer event code returned when the middle
mouse button is released.

Copyright © 1996. Thomas W. Christophe203

Icon Programming Handbook

Table 75 Summary of functions and keywords.

nanme(x) justasi mage(x) givesalegibleindication of aval-
ue, nane(x) givesalegibleindication of avariable.
If the variable, X, isa keyword or declared variable,
namegivesits name asacharacter string. If itisacom-
ponent of a structure, nanme(x) givesthe structure
type(l i st,t abl e,...) and theway the component is
usually accessed, eg., "l i st[2] ","rec. f".

negrat (r) Negate a rational number: -r.

link rational

NewCol or (W s) allocates a changeable color map entry for anew mu-
table color and assignsit initially the color specified
by s, and returns a small negative integer to represent
the mutable color. Failsif no changeable color map
entry isavailable.

Notice(W displays adialog box with an "Okay" button. Each
sl,s2,...,sn) string si isdisplayed on adifferent line. Not i ce re-
turns the string "Okay" when the user presses the but-
ton.
nunmeri c(x) convertsx to an integer or real value, if possible. Fails
if not possible.
open(sl, s2) opens the file named by string s1 for accessin the

mode described by string s2 and returns a file object
that represented it, or failsif it cannot be opened. The
modes are indicated by letters:

"a" —open in append mode for writing
" b" —open for both reading and writing
" c" —create

"r" —open for reading (default)

" W' —open for writing

"t " —translate line terminations into line feed char-
acters (default)

open(sl) Is equivalent tmpen(sl, "rt")

204 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

OpenDi al og(W
sl,s2)

displays adialog box containing a caption, and edit-

abletext string, and "Okay" and "Cancel" buttons. Itis
intended to be used for opening files. Parameter s 1

specifies the caption=Open: " by default. Parame
ters2 specifies the initial value of the editable text
string—the empty string by default. The edited tex
string value is placed in global variable
di al og_val ue. OpenDialog returns the name of
the button pressed.

ord(s)

converts the character in the one-character string
its internal integer representation

S to

&out put

the standard output file. (It is not a variable; it can
be reassigned.)

not

Pal ett eChars(pal ette)

returns as a character string the characters in the
ette. For a grayscale palette, the characters will reg
sent the intensities of gray from black to white in
order. For uniform color palettes, cn, the firdsthar-
acters can be indexed by n intensity levels (0, 1, .
1) for red, green, and blue, to select the character
resenting that combination of intensities,
P[r*n*n+g*n+b+1] . The last #2n+1 characters rep
resent the additional gray levels in order from darK
to lightest.

pal-
pre-

. N-
rep-

est

Pal et t eCol or (
pal ette,s)

returns the color in palette represented by the sing
character s.

jle

Pal etteG ays(pal ette)

returns a string containing in order from black to wh

ite

the characters from the palette representing levels of

gray.

Pal ett eKey(pal ette,s)

returns a character from the palette which is close
the color specified by string s.

to

Copyright © 1996. Thomas W. ChristopheQOS

Icon Programming Handbook

Table 75 Summary of functions and keywords.

pat hfind(s, p)

returns the path for the file whose base nameiiss. If
thefileis not found in the current directory, all the di-
rectories whose paths are listed in string p are exam-
ined, left toright. If p is&null (i.e. not specified), the
pathsin environment variable DPATH aretried, left to
right until the file can be successfully opened. The
pathsin p and DPATH are separated from each other
with blanks; the directories within the paths are sepa-
rated by "/ " characters. (Icon on MSDOS alows"/ "
rather than "\ " in paths.) Procedure dpat h returns

» s, if the file is found in the current directory.

e path || "/" || s,Iifthe fileis found at
pat h within p or DPATH.

l'i nk pat hfind
See alsodpat h.

Pattern(Ws)

establishes the pattern to be usedHor! . . . func-
tion calls. The pattern specification s may be one of

the

predefined names shown in Figure 44 on page 161, or

it may be a bi-level image as described in Section
17.4.4 on page 161.

pcl ose(file)

closes the pipe bound toi | e, which was opened by
popen() .

i nk popen

Pendi ng(W returns the list of events pending in window W. Th
list is empty is no events are pending.

&phi phi, the "golden ratio," approx. 1.61803 = a/b wherg a/
b=(atb)/a

&pi n, approximately 3.14159265358979

Pi xel (WX, y, w, h)

generates the colors of the pixels in the rectangle
width w and height h with its upper left corner in p
sition (x,y) of window W. The pixels are generated
rows, left to right, top to bottom.

of
D_
by

pop(L)

removes and returns the first element of list L

206 Copyright © 1996. Thomas W. Christopher

Functions and keywords

Table 75 Summary of functions and keywords.

popen(sl, s2) equivalenttoopen(sl, "p"| | s2) onsystemswith
pipes. On systemswithout pipes, it will usethe sys-
t en() function and atemporary fileto smulate a
pipe. However, the command given in s1 will not run
concurrently with the current process. (If you use
popen(sl, "wW'),youmustuse pcl ose(fil e)
to actually have the command s1 execute.)

i nk popen
proc(s) returns the procedure named s, where sis a string.
proc(s,i) returns the procedure for the operator whose nameiss

which takes i parameters, e.g.,
proc("*",1)(x) *X
proc("*".2)(xy) X*y
proc("[]",.2)(x.y) xX[y]
proc("[:]",3)(x.y.2) x[y:Z]
proc("...",2)(X,y) xtoy
proc("...",3)(x,y,z) xtoyhyz

pr ocki nd(x) faillsif x isnot a procedural value. Otherwisg, it re-
turns

"c", if x isarecord constructor,

"f ", if x isabuilt-in function,

"o", if x isan operator, or

"p", if x isauser-defined function.

l'i nk prockind

procname(x) returns the name of the procedure value x (which can
also be arecord constructor or operator), or failsif x
IS not aprocedure. If x isan operator, its name has its
number of parameters appended on the right, e.g.

procnanme(wite) yields"wite"
procnanme(proc("...",3)) yieds". .. 3"

i nk procnane

&pr ognamne thefile name of the executing program. It'savariable.
Y ou can assign another string to it if you wish.

pul I (L) removes and returns the last element of list L

Copyright © 1996. Thomas W. ChristopheQO?

Icon Programming Handbook

Table 75 Summary of functions and keywords.

push(L, x) inserts x asthe new first element of list L, moving the
other elements up one position, e.g., push([1,2,3],4)
createsthe same list as[4,1,2,3]

push(L, x1,x2,...,xn) iIsequivalentto {push(L, x1); push(L, x2);
... 3 push(L, xn)}.Theendresultisxn ontop
of the stack.

put (L, x) inserts x as the new last element of list L, leaving the
other elementsin their previous positions, e.g.,
put([1,2,3],4) creates the samelist as[1,2,3,4]

put (L, x1, x2,...,Xxn) iIsequivalentto{put (L, x1); put(L,x2); ...
; put(L,xn)}.

Rai se(W moves the window, W, in front of overlapping win-
dows.

& andom The seed of the random sequence. Y ou can assign a

new valueto it.

random ze()

aprocedure to set the seed of the random number gen-
erator to avalue determined in part from the date and
time. Y ou can use this to avoid always generating the
same sequence of random numbers each time the pro-
gramisrun.

i nk random z

randr eal (| ow, hi gh)

returns arandom real number, r, in the range
low <r < high.

i nk randreal

ranseq(seed)

gener ates the values of & random starting at seed.

link randseq

ranrange(m n, max)

returns a random integer in the range min to max, in-
clusive.

i nk ranrange

rat2str(r)

Convert the rational number r to its string representa-
tion.

link rational

&rdrag

the integer event code returned when the mouseis
moved while the right mouse button is pressed.

208 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

read() reads and returns as a string the next line from the stan-
dard input file (& nput), but failson end of file.
r ead strips off the terminating newline character
from the lineit returns.

read(f) reads and returns asa string the next linefrom thefile,

f ,but failsonend of file. r ead stripsoff the terminat-
ing newline character from the line it returns.

Readl mage(W s1, x, y)

will read the image in the file named sl into the win-

Readl mage(W dow W with itsupper-left corner at position (x,y). If s2
s1, x,Y, s2) Is specified, the colorsin theimage are converted into

colorsin palette s2.

reads() reads and returns as a string the next character from
the standard input file (& nput), but fails on end of
file.

reads(f) reads and returns as a string the next character from
thefile, f , but fails on end of file.

reads(f,i) reads and returns as astring the next i charactersfrom
thefile, f . Failson end of file. Returns fewer than i
characters if only that many remain.

real (x) converts x to areal number, if possible. Failsif not

possible.

reciprat(r)

Get the reciprocal of rational number: 1/r.

link rational

ReFind(re,s,i1,i2)

generates the positions in s of occurrences of regular
expression re. The positions generated will be the left-
most positions of the matching strings. Regular ex-
pression re can be a string representation of aregular
expression, or alist representation created by proce-
dure RePat(s). See section 6.13.2 on page 80.

link regexp

&r egi ons

generates the current sizes of the threeregions: static,
string, and block. The size of the static region may not
mean anything: Icon might allocate more space from
the system when needed.

Copyright © 1996. Thomas W. ChristopheQOg

Icon Programming Handbook

Table 75 Summary of functions and keywords.

ReMat ch(re,s,i1,i2) generates the positions in s following occurrences of

regular expression re beginning at i1. Regular expres-
sion re can be a string representation of aregular ex-
pression, or alist representation created by procedure
RePeat(s). See section 6.13.2 on page 80.

link regexp

renove(s)

removes the file named s from the disk directory, or
fallsif s cannot be removed.

renane(sl, s2)

renames the file whose nameis sl to have name 2.
Failsif it cannot rename si.

RePat (' s)

translates a string representation of aregular expres-
sion into alist representation. If you are going to use
the same expression repeatedly, it isbest to trandateit
with RePat once rather than having ReMatch or Re-
Find translate the string representation repeatedly. See
section 6.13.2 on page 80.

link regexp

repl (s,i)

produces a string equal to i copies of s concatenated
together

repl ace(sl, s2,s3)

replaces all occurrences of substring s2 in sl by s3.

link strings

&resi ze

theinteger event code returned when the window isre-
Sized.

reverse(s)

produces the string s reversed

right(s,i)

produces a string of length i containing string s right
justified with blanks append to the | eft to fill out the
field. If *s>i, then it returns §-i:0]

right(sl,i,s2)

produces a string of length i containing string s right
justified with copies of string s2 append to the left to
fill out thefield. If *s>i, then it returns §[-i:0]

round(r) nearest integer tor.
l'ink real 2i nt

&r press the integer event code returned when the right mouse
button is pressed.

&rrel ease the integer event code returned when the right mouse

button is released.

210 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

rtod(r)

convert radians to degrees

runerror (i, x)

cause the program to terminate with a standard run
time error message for error number i and offending
object x.

save(s)

saves the currently executing program asfile sand re-
turns the size of the file created. When executed, the
program will resume executing by returning from the
save. Not available on all systems.

SaveDi al og(W
sl,s2)

displays adialog box containing a caption, and edit-
abletext string, and "Yes', "No", and "Cancel" but-
tons. It isintended to be used for saving datain files.
Parameter s1 specifies the caption~Save: " by
default. Parameter2 specifies the initial value of thg
editable text string—the empty string by default. T
edited text string value is placed in global variable|
di al og_val ue. SaveDialog returns the name of t
button pressed.

D

ne

seek(f,i)

seeks to position in file f so that subsequent reads
writes will start at the i-th byte. Fails if the seek can

or
not

be done. As in Icon strings, the first byte in the file is
at position 1, and the last byte is indicated by position
0.

segnent (s, c) generates a sequence of strings which are the longest
substrings of s from left to right composed solely of
characters alternatively do or do not occur in c.
link segment

seq() generates the sequence 1,2,3,...

seq(i) generates the sequence i,i+1,i+2,...

seq(i,j) generates the sequence i,i+},i+2j,...; j must not be 0.

set () creates an empty set.

set (L) creates a set whose initial contents are the elements of
the list L.

&shift succeeds returning &null if the SHIFT key was
pressed during the event reported by the most regent
call of Event, otherwise fails.

sign(r) sign of r: -1 if r is negative, O ifris O, 1 if r is positive.

i nk real 2i nt

Copyright © 1996. Thomas W. Christophtel

Icon Programming Handbook

Table 75 Summary of functions and keywords.

sin(r)

sine of r (given in radians)

sl ashbal (
cl,c2,c3,s,i,j)

like bal, but does not count a character from c2 or c3
that is preceded by a backslash character when deter-
mining balance.

| i nk sl ashbal

sl shupto(c,s,i,j)

like upto, but treats backslash as an incorporation
character in s, preventing the position of following
character from being generated. Parametersss, i, and j
default asin the built-in functions, but requiresisj.
(Warning: dlshupto is reputed to have bugs.)

i nk sl shupto

sort (L)

creates a new list whose contents are the elements of
list L in sorted order. Elements of the sametype are
grouped together. Lists, records, and other mutable
objects are sorted in their group by their order of cre-
ation.

sort(S)

createsalist composed of the members of set Sin sort-
ed order. Elements of the same type are grouped to-
gether. Lists, records, and other mutable objects are
sorted in their group by their order of creation.

sort(T)

(where T isatable) isthesameassort (T, 1)

sort(T,i)

returnsalist containing the keys and valuesfrom table
T. If ki istheith key and vi isits corresponding value,
theresulting listis:

[[k1,v1],[k2,v2],...[kn,vn]] sorted by keysif i=1
[[k1,v1],[k2,v2],...[kn,vn]] sorted by valuesif i=2
[k1,v1k2v2,..knyvn] sorted by keysif i=3
[k1,v1k2v2,..knvn] sorted by valuesif i=4

sortf(L,i)

creates a new list whose contents are the elements of
list L in sorted order. Records and lists contained in L
with asize of at least | are sorted by their ith field.

sortf(S,i)

creates a new list whose contents are the elements of
set Sin sorted order. Records and lists contained in S
with asize of at least i are sorted by their ith field.

&sour ce

the co-expression that activated the current co-expres-
sion.

212 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

sqrt(r)

sgquare root of real r > 0.

stop(x1, x2,...)

writes out thevaluesx1, x2, . . . left-to-right to the
error output, &er r out , and exitswith an error status.
If any xi isafile, subsequent output isto that file.

&st or age

generates the amount of space currently in usein the
three regions. static, string, and block. Again, the
space occupied in the static region may not mean any-
thing.

str2rat(s)

Convert the string representation of arational number
(such as"3/2") to arational number.

link rational

strcpx(s) convert string representation sof acomplex number to
it's internal representation
i nk conpl ex

string(x) converts a number or a cset to a string.

subrat(ri,r2)

Subtract rational numbers: r1 - r2.

link rational

suffix(s, sep)

suf fix(s)

returns the lisf pr e, post] wherepr e is the sub-
string ofs up to the last occurrence®ép andpost
Is the substring of to the right of thesep. The sepa:
rator defaults to."", appropriate for both UNIX and
MSDOS. If the separat@ep does not occusuf -
fixreturny s, &ul |].

l[ink fil enane

systen(s)

executes the strirgas a system (shell) command a
returns the exit status (an integer) by calling the G
functionsyst em It is not available on all systems
butitis available on UNIX®©. The command should
able to direct its output to a file that the program c
then open and read.

be
an

tab(i)

moves&pos to positioni in &ubj ect and returns
the substring between the original positior&pbs
and its new position. Positioncan be zero or nega;

tive, but&pos is kept as a positive number. The as
signment t&pos is reversible: when resumed during

backtracking&pos will be set back to its original pa
sition before the ab.

Copyright © 1996. Thomas W. Christophe213

Icon Programming Handbook

Table 75 Summary of functions and keywords.

table()

returnsanew table. Attempting to look up akey notin
thetablereturns&nul | . For example, t [[]] will
yield &ul | becausethenew list[] can't bein the
table.

t abl e(x)

returnsanew table. Attempting to look up akey notin
the table returns the value of x. For example, t [[]]
will yield the value of x becausethe new list[] can-
not beinthetable. The expression x isevaluated when
thetable is created, so if you executet : =t a-

bl e([]),al new keysyou look up will point to the
samelist.

tail (s, sep)

tail (s)

returnsthelist [pr e, post] where pr e isthe sub-
string of s up to the last occurrence of sep and post
isthe substring of s to the right of the separator sep.
The separator defaultsto "/ " which is appropriate for
UNIX paths. Since Icon allows M SDOS paths to be
specified with "/" rather than "\", it can be used for
DOSif you trandate the paths. There are anumber of
Special cases, t ai | returns

e ["",s] if sep does not occur is.
e [sep,s[2:0]] ifsep==s[1].

e [s[1:j],s[]+1:0]] if sep occurs at posi-
tionj ,1<j <*s-1.

e [s[1:-1], &ull] if sep occurs as the last
character irs.

l[ink fil enane

tan(r)

tangent of r (given in radians)

214 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

t enpnane()

generates names for atemporary file, i.e. afile that
does not appear to aready exist. Under UNIX, thefile
name has the form

/tnp/i cont np. ddd
where ddd is a string of exactly three digits. Under
MS-DOS, the filenameis either of the forms:

temp\ i conOddd. t np
or

I con0ddd. t mp
Thefirst form uses the directory bound to the environ-
ment variable TEMP. If TEMP isnot defined, then the
second form isused, placing the filein the current di-
rectory.

Because | con cannot directly test whether afile exists,
t enpnane returns the names of filesit could not
open for reading, which might mean the file exists but
islocked. In that case, you will not be able to open it
for writing either. Thereforet enpnane isagenera
tor so that if you can not open the first file generated,
you should be able to open a subsequent one.

i nk tenpnane

Text W dt h(W s)

returns the number of pixels of width that string s
would requireif written in window W.

&tinme returns the number of milliseconds since the program
started executing.

& race when not equal to zero, every procedure call, return,
suspension, or resumption writes a message to &er -
rout and decrementsé&t r ace.

trin(s) produces a copy of string swith trailing blanks re-
moved

trims,cs) produces a copy of string swith all the rightmost char-
actersthat are contained in cset cs removed

trunc(r) nearest integer lessthanr.
l'ink real 2i nt

type(x) produces a string naming the type of object s, one of:

"integer" "real" "string"
"cset" "list"

"table" "set" "procedure”
"co-expression” "w ndow'
or the name of arecord type.

Copyright © 1996. Thomas W. Christophe215

Icon Programming Handbook

Table 75 Summary of functions and keywords.

&ucase '"ABCDEFGHIJKLMNOPQRSTUVWXYZ'’

Uncoupl e(W frees the window W. When the last binding to the
same canvasis removed, the window is closed.

upt o(c) upto(c,& subject,& pos,0)

upto(c, s) generatesthe positionsin sfrom 1 to * swhich contain
charactersin set c. Failsif no such character is found.

upto(c,s,i) generatesthe positionsin sfrom positioni to*swhich

contain charactersin set ¢. Failsif no such character is
found.

upto(c,s,i,j)

generates the positionsin sfrom position i to position
J which contain charactersin set c. Failsif no such
character isfound.

vari abl e(s)

returns the variable or variable keyword whose name
Iscontained in string s. It will only return avariable

known at the place of call—you can only access a
cal variable within a procedure.

O-

&ver si on

IS a string representation of the version of Icon tha
executing.

tis

VWALt rib(W
sl,s2,...)

sets and queries the attributes of a window. Each si
Is either" nane" or" nane=val ue" where name is
the name of an attribute and value is a string repre
tation of a value for that attribute. First WAttrib wil
perform assignments for all themane=val ue" pa-
rameters, then it will generate the values for all the
tributes named, left to right.

Generates the values of the attributes. Fails on an
tempt to set an invalidg, f g, f ont, orpat t er n.
Gives a run-time error on any other invalid value ¢
name.

ring

sen-

» at-

at-

WCl ose(W

closes the window W. The window is removed fro
the screen. It still, however, exists and can be refg
enced via other bindings. Closidgi ndow sets
&M ndowto &nul | .

Wel ay (Wi)

performs the rest of the output queued for window
and then delays i milliseconds.

W,

Wbone(W

waits until aQ(orq) is typed in the window, then clo
es it.

U
1

216 Copyright © 1996. Thomas W. Christopher

Table 75 Summary of functions and keywords.

Functions and keywords

VWl ush(W

performs the rest of the window commands that have
been queued for window W.

where(f)

returns the current file position, most likely for use
withseek later.

Wopen(

sl,s2,...,sn)

opens a new window with the values of its attributes
given by the strings. Each string isof the sameform as
avalueassignment in WAt t ri b: " nane=val ue"
where name is the name of an attribute and valueis a
string representation of avalue for that attribute. Re-
turnsthewindow. Assignsthe window to &M ndowif
&w ndowis previously &nul | .

VWRead(W

reads a line typed into window W in the manner of

r ead. Displays thetext cursor and echoes the charac-
terstyped if window attributescur sor andecho al-
low it.

WReads(W i)

readsi characters typed into window W in the manner
of r eads. Displays the text cursor and echoes the
characters typed if window attributes cur sor and
echo dlow it.

wite(xl,x2,...)

writes out thevaluesx1, x2, . . . left-to-right to the
standard output, and follows them with aline termina-
tion. If any xi isafile, the following values are writ-
tento that file until thefileis changed again or the end
of the write procedure. If any xi is neither afile nor a
string and cannot be converted to astring, wr i t e ter-
minates program execution with an error.

Witel mge(W
S, X, Y, w h)

writes the rectangle of pixels of width w and height h
with its upper left corner in position (x,y) of window

W into thefile named s. Normally Icon writesthe file
inGIF format, but it may allow other extensionsonthe
file name to choose other formats.

wites(sl, s2,...)

writes out thevaluesx1, x2, . . . left-to-right to the
standard output. It does not follow them with aline
termination. If any xi isafile, the following values
arewrittento that fileuntil thefileis changed again or
theend of thewrite procedure. If any xi isneither afile
nor a string and cannot be converted to a string,

wWr i t es terminates program execution with an error.

Wsync(W

waits until the rest of the window commands have
been performed that have been queued for window W.
WSync isaimed at client-server graphics.

Copyright © 1996. Thomas W. Christophte?

Icon Programming Handbook

Table 75 Summary of functions and keywords.

xdecode(f, p)

from file f that was previously saved there by xen;

11}

an-

VWVite(W writesthe stringssl, =2, .., sninwindow W in the man-
sl,s2,...,sn) ner of wr i t e—followed by moving the cursor to th
beginning of the next line, scrolling if required.
VWVites(W writes the strings s1, s2, .., snin window W in the m
sl,s2,...,sn) ner ofwr i t es—scrolling if required by any \n char
acters written.
&x The x coordinate of the event reported by the most re-
cent call of Event.
xdecode(f) reads, reconstructs, and returns the Icon data structure

code. Files, co-expressions, and windows are decoded

as empty lists (except for fil& nput , &out put ,
and&er r out). Fails if the file is not in xcode forma
or if it contains an undeclared record.

If p is providedxdecode reads the lines calling
p(f) rather thamead(f) . Seexencode for an
idea of what to use this for.

| i nk xcode

t

xdecoden(x, fn)

like xdecode, except that n is the name of a file ta
be opened for input (witbpen(fn)) .

| i nk xcode

xencode(x, f)
xencode(x, f, p)

encodes and writes the data struciuneto filef . The
data structure can be read back ixdgcode. If pa-
rameter p is provided, it is called in placei t e,
l.e.p(f,...) insteadotwite(f,...),inwhich
casef need not be a file.g.

xencode(x, L: =[], put)
will encode the data structure into a list,

| i nk xcode

xencoden(x, fn, opt)

like xencode, except that n is the name of a file ta
be opened for output (withpen(fn, opt)).The
options,opt , default td" w" .

| i nk xcode

&y

The y coordinate of the event reported by the mos
cent call of Event.

tre-

218 Copyright © 1996. Thomas W. Christopher

Syntax

Chapter 19 Syntax

19.1

Grammar for Icon

In the grammar, all literal characters are quoted. The equal sign definesthe
name on itsleft hand side to match the pattern on itsright. The vertical bar sep-
arates aternatives. Parentheses' group alternatives. Brackets enclose thingsthat
may or may not be present. Braces enclose things that may be present any num-
ber of times or may be absent entirely.

start : program
program = decl aration
| decl aration program

endOf Expr = ";" | EOL .
declaration = |ink_declaration
| gl obal declaration
| record_declaration

| procedure_declaration

link_declaration = "link" link_|list

link list = file_name
| file_name "," link_list

file_name = identifier
| string_literal

gl obal _declaration = "global" identifier_|ist
identifier list = identifier
| identifier_list "," identifier

record_decl aration =
"record" identifier "("
field_|ist_opt
II) n

field list opt = field Iist
|

Copyright © 1996. Thomas W. Christophteg

Icon Programming Handbook

field list = field_nane
| field_list "," field_nane

field name = identifier

procedure_decl aration =
proc_header

| ocal s_opt
initial_opt

expr essi on_sequence
"end"

proc_header =
"procedure” identifier
"(" paraneter _list_opt ")" endOf Expr

paranmeter _|ist_opt = paraneter_|i st

paranmeter _list = identifier
| identifier "[" "]"
| identifier "," paraneter_|ist
| ocal s_opt = locals
|
|l ocal s = | ocal _specification identifier_list

| local _specification
identifier_|ist endO Expr |ocals

| ocal _specification = "local"
| "static"
initial _opt = "initial" expression endO Expr

expr essi on_sequence = expressi on_opt
| expression_sequence endOf Expr expressi on_opt

expressi on_opt = expression

expression =
"break" expression_opt
| "create" expression
| "return" expression_opt
| "suspend" expression_opt
suspend_do_cl ause_opt
| "fail"

220 Copyright © 1996. Thomas W. Christopher

Syntax

| "next"
| "case" expression "of" "{"
case_|i st

| "if" expression "then" expression

el se_cl ause_opt
| "repeat" expression
| "while" expression while_do_clause_opt
| "until" expression until_do_cl ause_opt
|
|

"every" expression every_do_cl ause_opt
exprl

suspend_do_cl ause_opt = "do" expression |

whi | e_do_cl ause_opt = "do" expression |

until _do_cl ause_opt = "do" expression

every _do_cl ause_opt = "do" expression

el se_cl ause_opt = "el se" expression

case | ist = case_cl ause
| case_list endO Expr case_cl ause

case_cl ause = expression expression

| "default" ":" expression
expr1¥ exprl "&" expr2

| expr2
expr2¥ expr2 "?" expr3

| expr3
expr3¥ exprd4 ":=" expr3

| exprd ":=" expr3

expr4 "<-" expr3
expr4 "<->" expr3
expr4 op_asgn expr3
expr4

expr4¥ expr4 "to" exprs
| expr4 "to" expr5 "by" expr5
| expr5

expr5¥ expr5 "|" expr6
| expr6

expr 6= expr6 "<" expr7
| expr6 "<=" expr7
| expr6 "=" expr7
| expr6 ">=" expr7
| expr6 ">" expr7
| expr6 "~=" expr7

Copyright © 1996. Thomas W. ChristopheQZl

Icon Programming Handbook

| expr6 "<<" expr7
| expr6 "<<=" expr7
| expr6 "==" expr7
| expr6 ">>=" expr7
| expr6 ">>" expr7
I

I

I

|

expré "~==" expr7
expr6 "===" expr7
expr6 "~===" expr7
expr’/
expr7= expr7 "||" expr8
| expr7 "|||" expr8
| expr8
expr8= expr8 "+" expr9
| expr8 "-" expr9
| expr8 "++" expr9
| expr8 "--" expr9
| expr9

expr9= expr9 "*" expri0
| expr9 "/" exprl0
| expr9 "% exprl0
| expr9 "**" exprl0
| expr10

exprlb: expr1l "~" exprl10
| exprll

exprli: exprll "\" exprl2
| exprll "@ exprl2

| exprll "!" exprl2
| expril2
expr12= "not" exprl2

| "|" exprl2

| "!" exprl2

| "*" exprl2

| "+" exprl2

| "-" exprl2

| "." exprl2

| "/" exprl2

| "\" exprl2

| "=" exprl2

| "?" exprl2

| "~" exprl2

| "@ exprl2

| "A" exprl2

| expr13

222 Copyright © 1996. Thomas W. Christopher

Syntax

expr13= "(" expression_list ")"
"{" expression_sequence "}"

expr ess

subscri

subscri

keymo;d

[iteral
I

"[" expression_list

expri3 "."
expr13 " ("
expr13 "{"
exprl13 "["
Identifie
keywor d
l'iteral

r

lon_list =

expressi on_

pt _list =

subscript _list ",

pt =
expressi on
expressi on
expressi on

= "&"

field nane

expression_|ist
expression_|ist
subscript _|i st

"]

n) n
n } n
n] n

expr essi on_opt

||St ||1||

subscri pt

expression

n +: n

identifier

= string_litera
integer_litera
real literal
cset litera

expressi on_opt

subscri pt

expressi on
expressi on
expressi on

19.2 Table of operators
Icon has many operators and many precedence levels. We include showing the
operators from highest precedence to lowest for you to refer back to when you
need it.. However, it is much safer to use parentheses liberally than to try to re-
member the precedence levels.
prece- |associativity |[numeric |string |cset |list |set |co-ex- |other
dence pres-
sion
12 unary + - ? | ~* |* 2 @” || not
! ! * / \
11 binary left @ Foo
10 binary right |
9 binary left |* /| % * *

Copyright © 1996. Thomas W. Christophe223

Icon Programming Handbook

binary left

++

++

binary left

binary left

v A

binary left

left, binary or
ternary

binary right

binary left

binary left

224 Copyright © 1996. Thomas W. Christopher

Bibliography

Chapter 20 Bibliography

Foley, JamesD., Andriesvan Dam, Steven K. Feiner, John F. Hughes, Comput-
er Graphics: Principles and Practice, Addison-Wed ey Publishing Company,
1990.

Griswold, Ralph E. and Madge T. Griswold, Thelcon Programming Language,
Third Edition, Peer-to-Peer Communications, 1996.

Griswold, Ralph E. and Madge T. Griswold, The Implementation of the Icon
Programming Language, Princeton University Press, 1986.

Jeffery, Clinton L., Gregg M. Townsend, and Raph E. Griswold, Graphics Fa-
cilities for the Icon Programming Language: Version 9.0, IPD255, The Icon
Project, University of Arizona, July 19, 1994.

Griswold, Ralph E., Version 9.0 of the Icon Compiler, IPD237, Icon Project,
Department of Computer Science, University of Arizona, May 1994.

Copyright © 1996. Thomas W. Christophe225

Icon Programming Handbook

226 Copyright © 1996. Thomas W. Christopher

