
Optimizing Away C+ + Exception Handling

Jonathan L. Schilling

SCO, Inc.
430 Mountain Avenue, Murray Hill, NJ 07974

jls@sco.com

Abstract

A high performance implementation of C+ + exception handling
is crucial, because exception handling overhead is distributed
across all code. The commonly-used table-driven approach to
implementing exception handling can be augmented by an
optimization that seeks to identify functions for which (contrary
to first appearance) no exception handling tables need be
generated at all. This optimization produces modest but useful
gains on some existing C+ + code, but produces very significant
size and speed gains on code that uses empty exception
specifications, avoiding otherwise serious performance losses.

Keywords

C+ +, exception handling, compiler, optimization, benchmarks.

1. Introduction

Moreso than with many language features, a high performance
implementation of C+ + exception handling (EH) [C+ + 97] is
critical. This is because exception handling overhead in C+ + is
distributed: the code generated for all functions potentially
needs to contain exception handling information, even when no
explicit EH constructs are used in a function.

Most high-performance EH implementations use the commonly
known table-driven approach. The goal of this approach is to
present zero execution-time overhead, until and unless an
exception is thrown. In doing so, the speed of actually handling
an exception is sacrificed to whatever degree necessary; this is in
accordance with the general design goals of exception handling
in C+ + [Stroustrup 93] and other languages [Chase 94].

The table-driven approach consists of building logically read-
only, static tables at compile and link time that relate ranges of
instruction counter values to the dynamic state of the program
regarding exception handling. Then, if an exception is thrown,
the C+ + runtime system looks up the current instruction counter
in the tables and performs whatever semantic actions are
necessary: give control to a catch handler, invoke the destructor
for a local object, detect that an exception specification has been
violated, unwind the stack, etc.

Similar table-driven techniques have been used to implement
exception handling in other languages, and the technique was
envisioned as the basis for high performance implementations
when C+ + exception handling was first designed [Koenig 90]. A
good general illustration of the technique as it applies to C+ + is
given in [Lajoie 94]; specific implementations vary in the
details. A more detailed discussion of the technique for a C+ +-
like language is given in [Christensen 95]. The major alternative
approach, dynamic registration, is described in detail in
[Cameron 92]. It involves generating code that updates run-time
data structures about the state of the program regarding
exception handling. It is possible to implement exception
handling in a portable fashion using this technique (such as when
generating C as an intermediate language, or when using a C
back end unmodified for C+ +), and hence it is used in some
compilers, but it suffers from significantly slower execution
times and is harder to make thread-safe.

Because keeping the distributed overhead low is the primary
focus of an exception handling implementation, this paper does
not address the speed at which exceptions are thrown or caught,
nor for the most part the overhead of establishing try blocks.

2. Overview of SCO C+ + Implementation

This paper discusses consequences of the implementation of
exception handling in the C+ + compiler in the SCO
UnixWare/OpenServer Development Kit (UDK), which runs on
the SCO OpenServer and UnixWare operating systems for the
Intel x86 architecture.

The SCO implementation of exception handling uses the table-
driven approach. It is beyond the scope of this paper to fully
describe the implementation, such as the layout of the different
kinds of EH table entries, but some particular characteristics of it
are:

• All EH processing is performed by the C+ + runtime system
based on actions described by the tables. No "code snippets"
are inserted into the generated code to handle exceptions,
other than local register save and restore code emitted at
entry to try blocks and catch handlers.



• The type encodings used in matching thrown types with
catch handlers and exception specifications are the same
encodings as those used for the C+ + runtime type information
feature [Stroustrup 94]. These encodings are placed in
normal data sections, since runtime type information is
typically used during normal program execution.

• All other EH tables contain data that won’t be referenced
unless and until an exception is thrown. They are placed in
new, special data sections in the generated code, named
.eh_ranges, .eh_reloc, and .eh_other, depending
upon the relocation needs of the particular table entries
within. Since this data is all grouped together, virtual
memory pages containing the data will not need to be
referenced and loaded until an exception is thrown.

• All EH processing is thread-safe.

As can be seen, the EH sections are structured partly along the
assumption that in a typical normal and successful run of a C+ +
application, no exceptions will ever be thrown. Whether this is
in fact true is debatable; [Stroustrup 97] posits the opposite view.
There are probably not enough production applications now
using C+ + exception handling to be able to make any statistical
conclusions, although such a survey might be useful for
languages such as Ada that have had exceptions for a long time.

But even if an exception is thrown during execution, this EH
section arrangement is beneficial. This is because two of the
three section types contain no relocation data. Thus, when the
sections appear in dynamic libraries, they are position-
independent and are shared across all applications that are
accessing those libraries. This benefit was emphasized by [Chase
94] but here is extended to tables governing object cleanup
processing as well as tables for locating handlers.

3. Inefficiencies of the Table-Driven Approach

The table-driven technique has three sources of inefficiency:
exceptions can take a longer time to process, the tables can take
up a lot of space in memory, and in order to maintain the tables’
association with instruction ranges, some code optimizations that
would otherwise be done may have to be constrained or
suppressed entirely.

The first issue is part of the basic trade-off of this design, and the
second concern is dealt with as described in the previous section.
The most important concern is the third one: indirect overhead
due to lost optimization, which imperils the goal of zero
execution-time overhead. Lost optimization can come from
several sources:

• the necessity to suppress code motion and instruction
scheduling that would cause objects’ lifetimes to cross over
instruction counter markers delimiting them in the tables

• the necessity to teach back ends not to remove catch handlers
as unreachable code

• the necessity to keep local destructible objects in memory
rather than in registers, so that the EH runtime can find them
to destruct them

• an inability to use the most concise forms of stack layouts,
due to their not being self-describing in terms of how to walk
back from one stack frame to the previous one

• cache misses due to rarely-executed catch handler code
sitting in the middle of "main line" code.

All of these problems can be overcome with enough work in the
compiler and/or enough expansion of the granularity of the EH
tables, and in a better world they would be. In practice,
however, C+ + back ends (code generators and optimizers) are
usually derived from and shared with the back ends of compilers
for C and possibly other languages. These back ends were likely
not designed with exception handling in mind (unless they have
been used for languages such as Ada or Modula-3). How easily
they adapt to C+ + depends on characteristics of their architecture,
but substantially redesigning them may not be feasible on
technical, economic, or political grounds.

The SCO C+ + compiler suffers to some extent from most of
these problems. The venerable "C trees" syntax-based tree
structure used for the compiler’s intermediate language [Kristol
86] was not set up to express labels that are not branched to. The
global optimizer knows of many kinds of data constraints, but
does not know of textual code constraints. The optimizers
require dummy conditional branches to catch handler code after
each call within a try block, to correctly assess the data flow
[Cameron 92] [Dean 96]. None of the compilation components
has a standard interface for reading and manipulating complex
data structures such as the EH tables. Functions with EH tables
cannot easily be inlined, due to the tables’ contents being
determined in the compiler before the decision to inline is made.
Only the official, conservative stack layout specified by the
application binary interface [ABI 93] may be used, rather than
either of the more efficient layouts typically used when
optimization is on. Finally, the SCO tool that relocates rarely-
used code runs independently of the compilation system and
does not have ready access to the EH table information.

While significant effort has been made towards adapting these
components to the needs of C+ + exception handling, an
economical approach is to identify functions where, contrary to
first appearance, no EH tables or other indirect inefficiencies
need be generated.

This ensures that there will be no indirect loss of optimization at
all. Moreover, doing so subscribes to the "early intervention"
theory of optimization: the earlier in the compilation process for
a high-level language that you can identify an optimization, the
better off you are, because it relieves analytical and volume
pressure on downstream components.

Lastly, identifying functions that don’t need EH tables reduces
the total size of those tables. While the tables are already
structured so as to limit adverse effects upon system
performance when an exception is not thrown, it never hurts to
minimize their size. Furthermore, the smaller the tables, the
faster the lookup in them when an exception is thrown. Finally,
the smaller the tables, the less disk space required for C+ +
executables and dynamic libraries.



4. Optimizing Away Exception Handling

4.1 General principles

There are three basic reasons why a function may need to have
EH tables generated for it: it contains a try block, it contains an
exception specification, or it contains destructible local objects.
In each of these cases, if an exception is thrown out of or
through the function, the EH runtime will need tables to tell it
the necessary semantic actions to perform.

Furthermore, even if a function does not meet any of the above
criteria, it is still possible that an exception will be thrown
through it — that is, some function that this function calls may
throw an exception. Even though the C+ + runtime does not need
to do any cleanup actions within this function, it does need to be
able to unwind it. As explained in the previous section, this
means using a non-optimal stack frame layout on the Intel x86
architecture, and thus represents an indirect inefficiency.

The basic approach to eliminating EH tables and indirect
inefficiencies is to identify functions that by their signature, or
by examination of their code, are known not to throw an
exception; then to propagate this information in a bottom-up way
during compilation, to help analyze additional functions.
Functions that cannot throw an exception need not have EH
generation done for them, even if some or all of the above
conditions are true.1

How does one know a function cannot throw an exception? If it
does not throw any exceptions, and does not call any other
functions (or take any other actions) that can throw an exception.
(Because C+ + exceptions are synchronous, and can only result
from C+ + throw statements, this analysis is possible.)

This information can come from two sources: information the
programmer gives the compiler, i.e. exception specifications,
and information the compiler figures out from examining the
source as it compiles it.

A simple example of the first is this translation unit:

class A {
public:

A(int) throw();
˜A() throw();
int get() throw();

};
int f(int i) {

A a(22);
return a.get();

}

Because of the empty exception specifications, the compiler can
tell that no exception will be thrown from function f().

__________________

1. Actually, for internal architectural reasons the SCO compiler does not attempt
to eliminate EH tables when a function contains a try block, even if the
function cannot throw an exception. Nevertheless this is included in the
algorithm presented in Figure 1.

The exception specification most useful in optimization is the
empty one: A f(const A&) throw(); This says that a
call to f() cannot result in an exception being thrown back
through the caller. If an exception does occur somewhere within
f() or the functions it transitively calls, it will either have been
caught and handled by the time f() returns, or control will have
passed to the standard library function unexpected().

An example of the second source of information would be:

int g(int i) { return i + 1; }

int h(int j) { return g(2 * j) + g(2 - j); }

Function g() clearly cannot throw an exception, and as a
consequence neither can function h(). This kind of analysis
can be done for all non-virtual function calls. It cannot be done
for calls to virtual functions (since the source for the function
that gets called may not be visible or even written yet) unless it
can be statically determined which function will be called.

Another category of functions known to not throw exceptions are
those in the C standard library, most of which is part of the C+ +
standard library. Except for a couple of cases such as qsort
and bsearch which take function pointers as arguments, these
are guaranteed to not throw exceptions [C+ + 97].2

Of course these two sources of information can be combined.
Knowledge of whether a function can throw can be used to
optimize the generation of exception specifications themselves:

int e(int i, int j) throw() {
A a(22);
return h(a.get());

}

Normally the empty exception specification of function e()
would cause the generation of EH tables for it, in order to allow
the C+ + runtime to detect when an exception specification
violation occurs. But because we can analyze the definitions of
class A and function h() and know that no exception can be
thrown from them, we do not need to generate EH tables for
e(). This optimization is of great importance if empty
exception specifications are used frequently, as will be shown.

4.2 An algorithm for optimization

Figure 1 shows an algorithm that can be used to scan and mark
functions during a one-pass front end compilation. It requires
two additional boolean fields in the symbol table entry for
functions, requires_EH_tables and may_throw_exception.
Otherwise the algorithm is very inexpensive, since it does not
require an extra pass or other elaborate processing.

One somewhat subtle point in Figure 1 is that while scanning the
function, may_throw_exception refers to whether the function

__________________

2. Note that signal and atexit are known not to throw, since the functions
passed to them are not invoked at the time of the call. Also, it is necessary to
check command options, in case compilation is being done in "freestanding"
mode, in which library names may mean something else entirely.



_ ____________________________________________________

as compile each function func in translation unit do
func.requires_EH_tables := false
func.may_throw_exception := false

as compile each declaration/statement in func do
if see a throw

func.may_throw_exception := true
if see a real virtual function call

func.may_throw_exception := true
if see a call to a function g

if function_may_throw_exception(g)
func.may_throw_exception := true

end

if func.may_throw_exception
and (func contains a try block
or func has exception specification
or func has destructible objects)

func.requires_EH_tables := true

if func has null exception specification
func.may_throw_exception := false

end
_ ____________________________________________________

Figure 1. Algorithm for marking functions in symbol table

can throw an exception within it, so that we can know whether to
generate EH tables for it. But once the scan is finished,
may_throw_exception refers to whether the function can throw
an exception out of it, for analytical use when scanning functions
that call this one. A function such as void f() throw() {
throw 1; } will have the may_throw_exception value of its
symbol table change from true to false during compilation.

Figure 1 uses the algorithm function_may_throw_exception,
which is shown in Figure 2. In the back end of the compiler, the
new symbol table fields for the function are used to determine
what kinds of EH code and table generation are necessary;
Figure 3 supplies the decision logic. Figure 4 shows a larger
translation unit that requires no EH generation at all; it is used in
measurements in the next section.

5. Results

In this section we use some publicly available C+ + sources, that
in almost all cases do not use exception handling, as benchmarks
to measure various effects of the SCO EH implementation. We
try to answer the following questions:

1. What is the general overhead of EH in the SCO compiler?

2. How much worse would the overhead be if it were not for
the optimization described in Figure 1?

3. If programmers aggressively use empty exception
specifications, what will the effect upon performance be,
with and without the optimization?

The compilations and executions were done on an Acer Intel
Pentium 133 MHz machine with 32MB RAM and 512KB cache,

_ ____________________________________________________

function_may_throw_exception(f) return boolean is
if f has null exception specification

-- if f is expression, use its type to determine
return false

else if compilation is hosted
and f is non-pf-passing C std lib function

return false
else if f is compiler-generated function

-- these are known not to throw
return false

else if f is not defined
-- extern or not scanned yet
return true

else
return f.may_throw_exception

end
_ ____________________________________________________

Figure 2. Algorithm to determine if a function can throw

_ ____________________________________________________

as compile each function func in back end do
if func.requires_EH_tables

need to generate EH tables for function
need for RTS to be able to unwind the function

else if func.may_throw_exception
don’t need to generate EH tables for function
need for RTS to be able to unwind the function

else
don’t need to generate EH tables for function
don’t need RTS to be able to unwind the function

end
_ ____________________________________________________

Figure 3. EH code generation based on symbol table values

running SCO UnixWare 2.1.2 and compiled with SCO UDK 7.
The compiler implements all EH-related language and library
features in the new standard except function try blocks and
placement delete. All compilations were done using CC -O
-Kpentium options. Measurements of code and data size are
from the UNIX size command. Timings are in seconds and
are from the UNIX timex command, unless the benchmark
captures and prints timings itself, and are taken from the median
of three runs in single user state. All programs were linked
dynamically, except for a static C math library.

The C+ + sources used and where they were found are:

• Figure 4, the example from the previous section (which of
course is contrived to show the optimization at its best)

• richards, a small operating system simulator†

• OOPACK, an artificial benchmark to measure OOP
overhead‡; containing no destructible objects or EH usage, it

__________________

† http://www.cs.ucsb.edu/oocsb/benchmarks/

‡ http://www.kai.com/C_plus_plus/benchmarks/index.html



_ ____________________________________________________

#include <string.h>
class A {
public:

A(int i) { n = i; count++; }
˜A() { count--; }
void set(int i) { n = i; }
int get() const { return n; }
int get_count() const;

private:
int n;
static int count;

};
int A::count = 0;
int A::get_count() const { return count; }
inline int f(int i) {

A c(3);
return c.get() * i;

}
int g(const char* s) { return f(strlen(s)); }
int h(A& a, const char* s) {

A b(2);
const int x = g(s);
A d(x);
a.set(0);
return a.get() + b.get() + d.get();

}
int m() {

A a(1);
const int y = h(a, "EH");
return a.get_count() * y;

}
int main() {

int r;
for (int n = 1; n <= 1000000; n++)

r = m();
return r;

}
_ ____________________________________________________
Figure 4. Example of optimization generating no EH overhead

measures whether EH tables are generated unnecessarily

• the RPI (partial) implementation of the C+ + standard library
valarray class§ with its example case made into a driver

• deltablue, an incremental dataflow constraint solver†

• The Haney kernels, artificial benchmarks to measure OO
overhead in high-performance computing‡

• Newmat, a matrix algebra package§§

• the HP (out of date) implementation of the Standard
Template Library with the RPI set of examples* coalesced

__________________

§ ftp://ftp.cs.rpi.edu/pub/vandevod/Valarray

§§ http://webnz.com/robert/nzc_nm09.html

* ftp://ftp.cs.rpi.edu/pub/stl

and made into a driver3, used because it contains no EH

• ixx, an IDL to C+ + parser and stub code generator†

• lcom, an optimizing compiler for an HDL†

• eon, an object-oriented ray-tracing program.‡

In valarray and Newmat loops have been added to the main
procedure of the source, to get a measurable running time.

These benchmarks are not a scientifically sampled set of C+ +
code, nor are the execution times guaranteed to be meaningful
(differences up to ±2% are certainly suspect). Both artificial
"micro-benchmarks" and larger "real application" sources have
been used; some are veterans of previous C+ + performance
studies (e.g. [Driesen 96]). They do not cover several of the
major application areas that C+ + is known to be used in (a
perennial problem with C+ + performance measurement).
Nevertheless, it is hoped that the sources are representative
enough that the conclusions drawn below are valid.

5.1 Measurement of general EH overhead

Table 1 addresses the first of the above questions. The "EH
suppressed" results come from compiling using an
undocumented compiler option that disables the exception
handling language feature altogether. The "EH enabled" results
come from a normal compile with exception handling enabled.
Intuitively, the EH suppressed numbers should be better. The
"overhead" numbers represent the additional cost of EH enabled
compared to EH suppressed: the lower the number, the better.

What do these numbers show? The execution time overhead is
small, generally 5% or less. The text size overhead is also fairly
small, generally less than 10%.

In some cases the text size overhead is negative, meaning the
code is smaller with exceptions enabled than suppressed! This is
because the SCO compiler will not inline a function with EH
tables. Such functions tend to be complex, and by ignoring the
request to inline them, the compiler is often doing the
programmer a favor. The Haney numbers are broken down by
subtest to show that in two of the three cases, the EH-enabled
code runs faster than the EH-suppressed code, due to this effect.

The total size overhead numbers vary more widely, upwards of
20% or more in the worst cases. The bulk of this is the increased
data in the three special .eh_* sections. The amount of EH
table entries depends on lot on the object usage pattern in an
application; a lot of objects being created and destroyed in short
intervals tends to create larger tables, as do many small functions
containing destructible objects. In any case, the .eh_* sections
are not referenced until and unless needed.

How do these figures compare with other compilers?

__________________

3. Certain tests had to be dropped from the execution because they did not work
with an up-to-date compiler, but the code sizes reflect all tests.



_ _____________________________________________________________________________________________
EH suppressed EH enabled Overhead_ _____________________________________________________________________________________________

SLOC text Σ size time text Σ size time text Σ size time_ _____________________________________________________________________________________________
_ _____________________________________________________________________________________________

Figure 4 50 344 351 0.77 344 351 0.77 0% 0% 0%_ _____________________________________________________________________________________________
richards .5K 3732 7384 6.79 4596 9397 7.30 23% 27% 8%_ _____________________________________________________________________________________________
OOPACK .7K 5652 126356 70.4 5652 126356 70.8 0% 0% 1%_ _____________________________________________________________________________________________
valarray 1.1K 11332 16098 16.16 11844 17195 16.71 5% 7% 3%_ _____________________________________________________________________________________________
deltablue 1.5K 8884 12666 1.11 9636 15467 1.15 8% 22% 4%_ _____________________________________________________________________________________________
Haney 6K 40916 47167 40052 50572 -2% 7%_ _____________________________________________________________________________________________

complex 17.0 16.95 - <1%_ _____________________________________________________________________________________________
real 18.62 18.1 -3%_ _____________________________________________________________________________________________

vector 18.72 19.94 7%_ _____________________________________________________________________________________________
Newmat 8K 116980 145382 1.10 125508 180939 1.14 7% 24% 4%_ _____________________________________________________________________________________________
HP STL 12K 253956 294906 0.04 249540 310119 0.04 -2% 5% 0%_ _____________________________________________________________________________________________
ixx 14K 120164 166954 0.44 123844 188315 0.46 3% 13% 5%_ _____________________________________________________________________________________________
lcom 19K 84644 143132 2.73 95972 171489 2.86 13% 20% 5%_ _____________________________________________________________________________________________
eon 38K 552212 696714 61.72 536836 699625 61.83 -3% 1% <1%_ _____________________________________________________________________________________________ 






































































































































































































































































































Table 1. EH overhead in sample C+ + code

There has been considerable speculation but fewer published
results in this area, and those there are [Horstmann 95] [Shimeall
95] [Meyers 96] [Plauger 97] have tended to use artificial or
private benchmarks or to report different things. Suffice it to say
that it appears that the above figures are at least comparable to
those of other compilers. Certainly the static table-driven
approach results in faster times than the design alternative of
dynamic registration. For example, early in SCO’s EH work a
prototype implementation using dynamic registration showed a
18% execution time overhead for the Newmat benchmark, a
figure typical for that approach [EDG 97].

5.2 Measurement of the effect of the EH optimization

Next we look at the question of what would be the effect if the
EH optimization previously described were not in place.

Table 2 shows the difference in text size, total EH data size, and
execution speed for the sources, compiled in the default way
("Default", same as in Table 1), and compiled using an
undocumented environment variable to suppress this particular
EH optimization ("No Opt"). Intuitively, the default way should
produce better numbers. The "savings" numbers represent the
gain of the optimization: the higher the number, the better.

This time, the Haney numbers are given whole, as there were no
significant variations among the subtests. The current Silicon
Graphics STL implementation† is added, despite containing try
blocks, because STL is so important to modern C+ +.

What do these numbers show? The optimization produces some
good gains on EH data size, especially in the modern, template-
based classes such as valarray and STL. Like many specialized
optimizations, its effect on text size and execution time can be

__________________

† http://www.sgi.com/Technology/STL/

strong in an isolated piece of code, but overall tends to be
modest or imperceptible (but in optimization, every percent
helps). The efficacy of the optimization depends a lot upon an
application’s source code organization, with it doing well when
there are inlines (STL has a lot of template inlines) or functions
that reference other functions within a translation unit. In any
case, the optimization is very inexpensive to perform, so no
harm is done if it does not come up with anything.

5.3 Measurement of the effect of empty exception
specifications

Now we address the third question. So far we have measured the
effectiveness of the optimization upon source that does not use
exceptions or exception specifications, i.e. source for which the
compiler had to deduce which functions could not throw an
exception. But what is the effect of the optimization upon code
that does use exception specifications heavily?

There are few if any such sources publicly available. So instead,
the C+ +-to-C+ + instrumenting feature of the Edison Design
Group compiler was used to produce versions of the
benchmarks, that added empty exception specifications to every
non-C function lacking an exception specification. Admittedly,
this puts them in far more places (including virtual functions)
than would be likely in real use. But this at least provides an
upper bound for what the effects of adding empty exception
specifications might be. This was not done for the benchmarks
that use templates, however, because as a rule adding exception
specifications for unconstrained template code (such as STL) is
ill-advised [Mu

. .
ller 96].

Table 3 shows the text size, total EH data size, and execution
speed for the modified sources, compiled both in the default way
and without the optimization (as in Table 2). The
"improvement" numbers represent the gain of adding the empty
exception specifications compared to the unmodified sources, for
both with and without the optimization; the higher the number,



_ _______________________________________________________________________________
Default No Opt Savings_ _______________________________________________________________________________

.text Σ .eh time .text Σ .eh time .text Σ .eh time_ _______________________________________________________________________________
_ _______________________________________________________________________________

Figure 4 344 0 0.77 440 232 0.95 28% ∞% 23%_ _______________________________________________________________________________
richards 4596 1080 7.30 4596 1080 7.31 0% 0% <1%_ _______________________________________________________________________________
OOPACK 5652 0 70.8 5652 0 70.4 0% 0% -1%_ _______________________________________________________________________________
valarray 11844 572 16.71 12196 1132 16.82 3% 98% 1%_ _______________________________________________________________________________
deltablue 9636 2032 1.15 9636 2032 1.15 0% 0% 0%_ _______________________________________________________________________________
Haney 40052 4252 54.99 40228 4292 55.0 <1% 1% <1%_ _______________________________________________________________________________
Newmat 125508 28648 1.14 125780 28852 1.13 <1% 1% -1%_ _______________________________________________________________________________
HP STL 249540 19596 0.04 251316 22476 0.04 1% 15% 0%_ _______________________________________________________________________________
SGI STL 218884 29104 0.78 220308 31344 0.77 1% 8% 1%_ _______________________________________________________________________________
ixx 123844 17664 0.46 123860 18328 0.45 <1% 4% -2%_ _______________________________________________________________________________
lcom 95972 16940 2.86 96036 17240 2.79 <1% 2% -2%_ _______________________________________________________________________________
eon 536836 17664 61.83 536148 18124 63.12 <1% 3% 2%_ _______________________________________________________________________________ 

















































































































































































































































Table 2. Effect of EH optimization in sample C+ + code

_____________________________________________________________________________________________________________
Default Improvement from normal No Opt Improvement from normal_____________________________________________________________________________________________________________

.text Σ .eh time .text Σ .eh time .text Σ .eh time .text Σ .eh time_____________________________________________________________________________________________________________
_____________________________________________________________________________________________________________

Figure 4 360 0 0.83 -5% 0% -8% 476 472 2.35 -8% -∞% -147%_____________________________________________________________________________________________________________
richards 4580 1160 6.74 <1% -7% 8% 5940 4040 14.95 -29% -274% -105%_____________________________________________________________________________________________________________
OOPACK 5524 120 79.3 2% -∞% -8.9% 5568 1600 126.5 1% -∞% -80%_____________________________________________________________________________________________________________
deltablue 9028 1640 1.08 6% 19% 6% 10612 6112 1.37 -10% -201% -19%_____________________________________________________________________________________________________________
ixx 124660 22984 0.50 -1% -30% -9% 127396 57848 0.58 -3% -216% -29%_____________________________________________________________________________________________________________
lcom 95044 17112 2.78 1% -1% 3% 98388 40120 3.00 -2% -133% -7%_____________________________________________________________________________________________________________ 




















































































































































































Table 3. Effect of adding throw()’s to all functions

the better. If the improvement is negative, adding the exception
specifications degraded performance.

What do these numbers show?

• That when empty exception specifications are added and the
optimization is in place, there can sometimes be significant
savings over not using exception specifications at all, such as
with richards and deltablue, where execution times become
about the same as the EH-suppressed numbers of Table 1. In
other cases there can be significant degradations4.

• But when empty exception specifications are added and the
optimization is not in place, the generated code becomes
much worse than if the specifications were not there at all!
Execution times get worse by up to a factor of two, and EH
data sizes by up to a factor of three.

Thus when exception specifications are present, this
optimization is of critical importance. While exception
specifications were not explicitly designed with the goal of
giving compilers the ability to better optimize [Koenig 90], that
has been an expectation, at least among the C+ + user
community5 and compiler vendors.6 Without this compiler

__________________

4. However the slightly worsened numbers for the Figure 4 default case are due
to code generator weirdness and not to EH tables getting introduced.

5. For example, see the discussions of this topic in the Usenet newsgroup
comp.lang.c++.moderated during November 1996 and February-March 1997.

6. During the C+ + language standardization process Sun Microsystems and

optimization, adding exception specifications to code does
indeed de-optimize it, as Table 3 shows. This can be surprising
to programmers [Meyers 96].7 With it, exception specifications
cause no extra overhead unless necessary, and the optimization
that they do produce can be propagated further upwards.

Note however that exception specifications, including empty
ones, should not be used casually in an effort to achieve a
performance boost. [Reeves 96] presents a number of reasons
why proper use of exception specifications can be problematic.
Nevertheless, as programmers make use of exception
specifications, and as some of the new C+ + Standard library
functions that have exception specifications are used, this
optimization will become more and more important.

6. Areas for Future Work

This paper suggests several ways in which the elimination of EH
tables and their associated indirect inefficiences could be

_ _________________________________________________________________

others argued successfully for strengthening the semantics of exception
specifications such that these optimizations could be made.

7. Indeed, during ANSI public review comments on the draft standard, a
request was received for a new language feature to overcome the fact that a
commercial compiler was experiencing this de-optimization for such code.



improved: analysis of functions in two passes; dynamic flow
analysis of virtual and indirect function calls; analysis of non-
empty exception specifications (perhaps more useful in Java);
identifying POSIX and other standards-based C calls known
(under a compiler option) not to thrown an exception;
elimination of try blocks from instantiated functions that cannot
throw an exception; and inter-compilation-unit analysis.

7. Conclusions

Unlike many C+ + compilers, the SCO compiler does not offer a
user-level compilation option to suppress exception handling8

(or any other language feature). The philosophy is that it is a
compiler vendor’s job to provide an implementation that makes
every language feature acceptable, in terms of performance or
any other criterion. Thus it is especially important that the
overhead resulting from exception handling not be objectionable.

The measurements given here show that the general overhead,
while quite variable from one application to the next, can indeed
be kept down to acceptable levels.

Furthermore a specific, inexpensive optimization to detect
functions that do not need to have EH information generated for
them, can provide a modest benefit on some general code and a
critical benefit on code that uses empty exception specifications.

Acknowledgments

Portions of the SCO exception handling implementation are
derived from the Edison Design Group C+ + compiler product,
which uses a dynamic registration approach but allows a number
of its EH data structures to be reused in a table-driven approach.

Joel Silverstein, Susan Carvalho, Paul Putter, and Robert Geva
contributed to the design and implementation of exception
handling support in the linker and compiler back end.

Daveed Vandevoorde, Glen McCluskey, Elaine Siegel, Joel
Silverstein, Dave Prosser, and Steve Adamczyk contributed
useful comments on all or parts of this paper.

References

[ABI 93] System V Application Binary Interface, Intel
386TM Architecture Processor Supplement
(Third Ed.), UNIX Press, 1993.

[C+ + 97] Working Paper for Draft Proposed
International Standard for Information
Systems — Programming Language C+ +,
X3J16/97-0108 WG21/N1146, 25 Nov. 1997.

__________________

8. Except in the narrow case where C+ + is used to write kernel-level device
drivers, in which context use of EH is not allowed.

[Cameron 92] Cameron, D., P. Faust, D. Lenkov, and M.
Mehta, "A Portable Implementation of C+ +
Exception Handling", Proc. USENIX C+ +
Conference, August 1992.

[Chase 94] Chase, D., "Implementation of exception
handling-I", Journal of C Language
Translation, Vol. 5, No. 4, June 1994.

[Christensen 95] Christensen, M.M., "Methods for Handling
Exceptions in Object-oriented Programming
Languages", M.Sc. Thesis, Department of
Mathematics and Computer Science, Odense
University, January 1995.

[Dean 96] Dean, J., G. DeFouw, D. Grove, V. Litvinov,
and C. Chambers, "Vortex: An Optimizing
Compiler for Object-Oriented Languages",
Proc. OOPSLA ’96, ACM SIGPLAN Notices,
Vol. 31, No. 10, October 1996.

[Driesen 96] Driesen, K., and U. Ho
. .
lzle, "The Direct Cost

of Virtual Function Calls in C+ +", Proc.
OOPSLA ’96, ACM SIGPLAN Notices, Vol.
31, No. 10, October 1996.

[EDG 97] C+ + Front End Internal Documentation,
Edison Design Group, Inc., February 1997.

[Horstmann 95] Horstmann, C.S., "C+ + compiler shootout",
C+ + Report, Vol. 7, No. 6, July-August 1995.

[Koenig 90] Koenig, A., and B. Stroustrup, "Exception
Handling for C+ +", Journal of Object Oriented
Programming, Vol. 3, No. 2, July/Aug. 1990.

[Kristol 86] Kristol, D.M., "Four Generations of Portable C
Compiler", Proc. USENIX Summer Conf.,
1986.

[Lajoie 94] Lajoie, J., "Exception Handling — Supporting
the runtime mechanism", C+ + Report, Vol. 6,
No. 3, March-April 1994.

[Meyers 96] Meyers, S., More Effective C+ +. Addison-
Wesley, 1996.

[Mu
. .
ller 96] Mu

. .
ller, H.M., "Ten Rules for Handling

Exception Handling Successfully", C+ +
Report, Vol. 8, No. 1, January 1996.

[Plauger 97] Plauger, P.J., "Embedded C+ +: An Overview",
Embedded Systems Programming, Vol. 10,
No. 12, December 1997.

[Reeves 96] Reeves, J.W., "Ten Guidelines for Exception
Specifications", C+ + Report, Vol. 8, No. 7,
July 1996.

[Shimeall 95] Shimeall, S.C., "An Exception Hierarchy for
Embedded Applications", Embedded Systems
Programming, Vol. 8, No. 11, Nov. 1995.

[Stroustrup 93] Stroustrup, B., "A History of C+ +", SIGPLAN
Second History of Programming Languages
Conference (HOPL-II), ACM SIGPLAN
Notices, Vol. 28, No. 3, March 1993.

[Stroustrup 94] Stroustrup, B., The Design and Evolution of
C+ +. Addison-Wesley, 1994.

[Stroustrup 97] Stroustrup, B., The C+ + Programming
Language (Third Ed.). Addison-Wesley, 1997.


